In this paper, we propose a deep learning approach to tackle the automatic summarization tasks by incorporating topic information into the convolutional sequence-to-sequence (ConvS2S) model and using self-critical sequence training (SCST) for optimization. Through jointly attending to topics and word-level alignment, our approach can improve coherence, diversity, and informativeness of generated summaries via a biased probability generation mechanism. On the other hand, reinforcement training, like SCST, directly optimizes the proposed model with respect to the non-differentiable metric ROUGE, which also avoids the exposure bias during inference. We carry out the experimental evaluation with state-of-the-art methods over the Gigaword, DUC-2004, and LCSTS datasets. The empirical results demonstrate the superiority of our proposed method in the abstractive summarization.
A method is presented for predicting the space group of a structure given a calculated or measured atomic pair distribution function (PDF) from that structure. The method utilizes machine learning models trained on more than 100 000 PDFs calculated from structures in the 45 most heavily represented space groups. In particular, a convolutional neural network (CNN) model is presented which yields a promising result in that it correctly identifies the space group among the top‐6 estimates 91.9% of the time. The CNN model also successfully identifies space groups for 12 out of 15 experimental PDFs. Interesting aspects of the failed estimates are discussed, which indicate that the CNN is failing in similar ways as conventional indexing algorithms applied to conventional powder diffraction data. This preliminary success of the CNN model shows the possibility of model‐independent assessment of PDF data on a wide class of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.