Identifying the underlying mechanisms that explain the spatial variation in stream fish assemblages is crucial for the protection of species diversity. The influences of local habitat and stream spatial position on fish assemblages were examined from first-order through third-order streams within a dammed watershed, the Qingyi Stream, China. Based on linear regression models, the most important environmental variables influencing fish species richness were water temperature and wetted width, but stream spatial position variables were less important. Using canonical correspondence analysis, five environmental variables were identified to significantly influence fish assemblages, including three habitats (elevation, substrate and water depth) and two spatial variables (C-link and Link). Our results suggest that, in a heavily dammed watershed, by blocking the migration routes of fishes, dams weaken the influence of stream spatial position on fish species richness. However, fish species compositions are significantly influenced by both local habitat environment and stream spatial position, which is perhaps owing to the distribution of fish species according to ecological requirements not related to spatial processes.
The genetic basis of larval host-plant preference was investigated in reciprocal F 1 , F 2 , and backcrossed generations derived from hybrid crosses between the generalist species Helicoverpa armigera (Hübner) and the closely related specialist species Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae). Host-plant preference for cotton [ Gossypium arboreum L. (Malvaceae)] and pepper [ Capsicum frutescens L. (Solanaceae)] of fifth-instar caterpillars was tested by using a two-choice leaf-disk assay. Helicoverpa armigera and H. assulta were significantly different in their feeding preferences, but the difference was not significant in the reciprocal hybrids, which showed there were no maternal/cytoplasmic effects. Comparisons of feeding preference between different groups of females or males demonstrated that the trait was not controlled by sex-linked loci. The distributions of feeding preference index values for crosses that carried similar complements of autosomal genes were not significantly different, whereas crosses with different complements of autosomal genes were associated with significantly different feeding preferences, indicating that feeding preference of the two species for cotton and pepper, respectively, is controlled by autosomal genes. It was found that one major autosomal locus affected this feeding preference, with the H . armigera -derived alleles being partially dominant to those carried by H. assulta . The genetic analysis of hybrids contributes to understand the evolution of feeding preference in these closely related species.
The influences of low-head dams on the fish assemblages were examined in this study, using fish data collected in six treatment and five reference sites at three low-head dams in the headwater streams of the Qingyi watershed, China. Comparing with those in the reference sites, local habitat variables were significantly altered by low-head dams in the treatment sites, involving wider channel (only in the impoundment area), deeper water and slower flow. Fish species richness varied significantly across seasons, not across site categories, suggesting that these low-head dams did not alter species richness. However, significant decreases in fish abundance and density were observed in the impoundment areas immediately upstream of dams, but not in the plunge areas downstream. Fish assemblage structures kept relative stability across seasons, and their significant difference between-site was only observed between the impoundment areas and the sites far from dams upstream. This variation in assemblage structures was due to the differing relative abundance of some cooccurring species; more lentic but less lotic fish was observed in the impoundment areas. The spatial and temporal patterns of fish assemblages were correlated with local habitat in this study area. Wetted width had negative correlation with fish species richness, abundance and density, respectively. Water temperature also positively affected species richness. In addition, wetted width, water depth, current velocity and substrate were the important habitat variables influencing assemblage structures. Our results suggested that, by modifying local habitat characteristics, low-head dams altered fish abundance and density in the impoundment areas immediately upstream of dam, not in the plunge areas immediately downstream, and thereby influenced fish assemblage structures in these stream segments.
Reciprocal hybridizations between Helicoverpa armigera (Hü bner) and Helicoverpa assulta (Guenée) were studied. The cross between females of H. armigera and males of H. assulta yielded only fertile males and sterile individuals lacking an aedeagus, valva or ostium bursae. A total of 492 larvae of the F 1 generation were obtained and 374 of these completed larval development and pupated. Only 203 pupae were morphologically normal males, the remaining 171 pupae were malformed. Larvae and pupae that gave rise to morphologically abnormal adults exhibited longer development times. Sterility was not only associated with malformed external sex organs, but also a range of abnormalities of the internal reproductive system: (i) loss of internal reproductive organs, (ii) with one to three copies of an undeveloped bursa copulatrix; or (iii) with one or two undeveloped testes. Normal male hybrid adults showed higher flight activity in comparison with males of both species. In contrast, the cross between females of H. assulta and males of H. armigera yielded morphologically normal offspring (80 males and 83 females). The interaction of the Z-chromosome from H. assulta with autosomes from H. armigera might result in morphological abnormalities found in hybrids and backcrosses, and maternal-zygotic incompatibilities might contribute to sex bias attributed to hybrid inviability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.