Quantum dots are a unique class of emitters with size-tunable emission wavelengths, saturated emission colors, near-unity luminance efficiency, inherent photo- and thermal- stability and excellent solution processability. Quantum dots have been used as down-converters for back-lighting in liquid-crystal displays to improve color gamut, leading to the booming of quantum-dot televisions in consumer market. In the past few years, efficiency and lifetime of electroluminescence devices based on quantum dots achieved tremendous progress. These encouraging facts foreshadow the commercialization of quantum-dot light-emitting diodes (QLEDs), which promises an unprecedented generation of cost-effective, large-area, energy-saving, wide-color-gamut, ultra-thin and flexible displays. Here we provide a Progress Report, covering interdisciplinary aspects including material chemistry of quantum dots and charge-transporting layers, optimization and mechanism studies of prototype devices and processing techniques to produce large-area and high-resolution red-green-blue pixel arrays. We also identify a few key challenges facing the development of active-matrix QLED displays.
Colloidal quantum dots are promising emitters for quantum-dot-based light-emitting-diodes. Though quantum dots have been synthesized with efficient, stable, and high colour-purity photoluminescence, inheriting their superior luminescent properties in light-emitting-diodes remains challenging. This is commonly attributed to unbalanced charge injection and/or interfacial exciton quenching in the devices. Here, a general but previously overlooked degradation channel in light-emitting-diodes, i.e., operando electrochemical reactions of surface ligands with injected charge carriers, is identified. We develop a strategy of applying electrochemically-inert ligands to quantum dots with excellent luminescent properties to bridge their photoluminescence-electroluminescence gap. This material-design principle is general for boosting electroluminescence efficiency and lifetime of the light-emitting-diodes, resulting in record-long operational lifetimes for both red-emitting light-emitting-diodes (T 95 > 3800 h at 1000 cd m −2) and blue-emitting light-emitting-diodes (T 50 > 10,000 h at 100 cd m −2). Our study provides a critical guideline for the quantum dots to be used in optoelectronic and electronic devices.
Quantum-dot light-emitting diodes (QLEDs) may combine superior properties of colloidal quantum dots (QDs) and advantages of solution-based fabrication techniques to realize high-performance, large-area, and low-cost electroluminescence devices. In the state-of-the-art red QLED, an ultrathin insulating layer inserted between the QD layer and the oxide electron-transporting layer (ETL) is crucial for both optimizing charge balance and preserving the QDs' emissive properties. However, this key insulating layer demands very accurate and precise control over thicknesses at sub-10 nm level, causing substantial difficulties for industrial production. Here, it is reported that interfacial exciton quenching and charge balance can be independently controlled and optimized, leading to devices with efficiency and lifetime comparable to those of state-of-the-art devices. Suppressing exciton quenching at the ETL-QD interface, which is identified as being obligatory for high-performance devices, is achieved by adopting Zn Mg O nanocrystals, instead of ZnO nanocrystals, as ETLs. Optimizing charge balance is readily addressed by other device engineering approaches, such as controlling the oxide ETL/cathode interface and adjusting the thickness of the oxide ETL. These findings are extended to fabrication of high-efficiency green QLEDs without ultrathin insulating layers. The work may rationalize the design and fabrication of high-performance QLEDs without ultrathin insulating layers, representing a step forward to large-scale production and commercialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.