Anti-programmed cell death 1 (PD-1) or anti-PD-ligand (L) 1 drugs, as classic immune checkpoint inhibitors, are considered promising treatment strategies for tumors. In clinical practice, some cancer patients experience drug resistance and disease progression in the process of anti-PD-1/PD-L1 immunotherapy. Tumor-associated macrophages (TAMs) play key roles in regulating PD-1/PD-L1 immunosuppression by inhibiting the recruitment and function of T cells through cytokines, superficial immune checkpoint ligands, and exosomes. There are several therapies available to recover the anticancer efficacy of PD-1/PD-L1 inhibitors by targeting TAMs, including the inhibition of TAM differentiation and re-education of TAM activation. In this review, we will summarize the roles and mechanisms of TAMs in PD-1/PD-L1 blocker resistance. Furthermore, we will discuss the therapies that were designed to deplete TAMs, re-educate TAMs, and intervene with chemokines secreted by TAMs and exosomes from M1 macrophages, providing more potential options to improve the efficacy of PD-1/PD-L1 inhibitors.
Background. Oxaliplatin (L-OHP) is a common chemotherapy drug used in the treatment of colorectal cancer (CRC). Our previous work showed that Zuo Jin Wan (ZJW), a traditional Chinese medicine prescription, could improve sensitivity to L-OHP in the treatment of CRC, but the detailed mechanism is not clear. In previous mechanistic studies, we found that the miR-200s expression in CRC is associated with L-OHP sensitivity through regulation of MDR1/p-gp and the downstream c-JunN-terminal kinase (JNK) signaling pathway. Moreover, lncRNA-MALAT1 offers great potential in the regulation of drug resistance by interacting with miR-200s. Therefore, in this work, we explored whether ZJW could reverse L-OHP resistance in CRC by regulating MALAT1, miR-200s, and the downstream signaling pathway. Methods. Cell Counting Kit-8 and flow cytometry were used to detect the effects of ZJW combined with L-OHP on chemotherapy tolerance and cell apoptosis of HCT116/L-OHP cells. Western blotting and quantitative real-time PCR (qRT-PCR) were used to detect the activation of the JNK signaling pathway and the protein and mRNA expression levels of the drug resistance-related MDR1/ABCB1 gene in HCT116/L-OHP cells treated with ZJW. The binding sites of MALAT1 and miR-200s were predicted by bioinformatics tools and confirmed by qRT-PCR. qRT-PCR was used to detect the expression of miR-200s and MALAT1 in HCT116/L-OHP cells treated with ZJW. A xenograft model of CRC in nude mice was established to observe the effect of ZJW combined with L-OHP on the growth of subcutaneously transplanted tumors. Apoptosis in tumor cells was detected by TUNEL staining. The activation of the JNK signaling pathway and the expression of drug resistance-related proteins were detected by immunohistochemistry and immunofluorescence. qRT-PCR was used to detect the expression of miR-200s and the MALAT1 gene in the tumors. Results. Our study showed that ZJW could significantly decrease the proliferation and promote apoptosis of HCT116/L-OHP cells treated with L-OHP. We further proved that ZJW could reverse the drug resistance of HCT116/L-OHP cells by reducing MALAT1, indirectly upregulating miR-200s, alleviating the activation of the JNK signaling axis, and downregulating the expression of resistance proteins such as MDR1/ABCB1 and ABCG2. ZJW combined with L-OHP inhibited the growth of subcutaneously transplanted tumors and induced apoptosis in nude mice. ZJW reduced the expression of MALAT1 and upregulated the expression of miR-200s in transplanted tumors. In addition, ZJW also alleviated the activation of the JNK signaling pathway while reducing the expression of MDR1/ABCB1 and ABCG2. Conclusions. Our study identified that MALAT1 promotes colorectal cancer resistance to oxaliplatin by reducing the miR-200s expression. ZJW may reverse chemoresistance by inhibiting the expression of MALAT1 and regulating the miR-200s/JNK pathway, providing an experimental basis for the clinical application of ZJW in relieving chemotherapy resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.