Prenatal exposure to polybrominated diphenyl ethers (PBDEs) may disrupt thyroid function and contribute to adverse neurodevelopmental outcomes. We conducted a pilot study to explore the relationship between serum concentrations of lower-brominated PBDEs (BDE-17 to -154), higher-brominated PBDEs (BDE-183 to -209), and hydroxylated PBDE metabolites (OH-PBDEs) with measures of thyroid function in pregnant women. Concentrations of PBDEs, OH-PBDEs, thyroid-stimulating hormone (TSH), total thyroxine (T4), and free T4 were measured in serum samples collected between 2008 and 2009 from 25 second trimester pregnant women in California. Median concentrations of lower-brominated PBDEs and OH-PBDEs were the highest reported to date in pregnant women. Median concentrations of BDE-47 and the sum of lower-brominated PBDEs (ΣPBDE5) were 43.1 ng/g lipid and 85.8 ng/g lipid; and 0.084 ng/mL for the sum of OH-PBDEs (ΣOH-PBDE4). We observed a positive association between the weighted sum of chemicals known to bind to transthyretin (ΣTTR binders) and TSH levels. We also found positive associations between TSH and ΣPBDE5, ΣOH-PBDE4, BDE-47, BDE-85, 5-OH-BDE47, and 4′-OH-BDE49; and an inverse association with BDE-207. Relationships with free and total T4 were weak and inconsistent. Our results indicate that PBDE exposures are elevated in pregnant women in California, and suggest a relationship with thyroid function. Further investigation is warranted to characterize the risks of PBDE exposures during pregnancy.
SignificanceToday, amino acids are primarily manufactured via microbial cultivation processes, which are costly, are time consuming, and require extensive separations processes. As an alternative, chemocatalytic approaches to produce amino acids from renewable feedstocks such as bio-based sugars could offer a rapid and potentially more efficient means of amino acid synthesis, but efforts to date have been limited by the development of facile chemistry and associated catalyst materials to selectively produce α-amino acids. In this work, various α-amino acids, including alanine, leucine, aspartic acid, and phenylalanine, were obtained from both biomass-derived α-hydroxyl acids and glucose. The route bridges plant-based biomass and proteinogenic α-amino acids, offering a chemical approach that is potentially superior to microbial cultivation processes.
BackgroundCucumber, Cucumis sativus L., is an economically important vegetable crop which is processed or consumed fresh worldwide. However, the narrow genetic base in cucumber makes it difficult for constructing high-density genetic maps. The development of massively parallel genotyping methods and next-generation sequencing (NGS) technologies provides an excellent opportunity for developing single nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of horticultural traits. Specific-length amplified fragment sequencing (SLAF-seq) is a recent marker development technology that allows large-scale SNP discovery and genotyping at a reasonable cost. In this study, we constructed a high-density SNP map for cucumber using SLAF-seq and detected fruit-related QTLs.ResultsAn F2 population of 148 individuals was developed from an intra-varietal cross between CC3 and NC76. Genomic DNAs extracted from two parents and 148 F2 individuals were subjected to high-throughput sequencing and SLAF library construction. A total of 10.76 Gb raw data and 75,024,043 pair-end reads were generated to develop 52,684 high-quality SLAFs, out of which 5,044 were polymorphic. 4,817 SLAFs were encoded and grouped into different segregation patterns. A high-resolution genetic map containing 1,800 SNPs was constructed for cucumber spanning 890.79 cM. The average distance between adjacent markers was 0.50 cM. 183 scaffolds were anchored to the SNP-based genetic map covering 46% (168.9 Mb) of the cucumber genome (367 Mb). Nine QTLs for fruit length and weight were detected, a QTL designated fl3.2 explained 44.60% of the phenotypic variance. Alignment of the SNP markers to draft genome scaffolds revealed two mis-assembled scaffolds that were validated by fluorescence in situ hybridization (FISH).ConclusionsWe report herein the development of evenly dispersed SNPs across cucumber genome, and for the first time an SNP-based saturated linkage map. This 1,800-locus map would likely facilitate genetic mapping of complex QTL loci controlling fruit yield, and the orientation of draft genome scaffolds.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1158) contains supplementary material, which is available to authorized users.
Chemical synthesis of amino acids from renewable sources is an alternative route to the current processes based on fermentation. Here, we report visible-light-driven amination of biomass-derived α-hydroxyl acids and glucose into amino acids using NH3 at 50 °C. Ultrathin CdS nanosheets are identified as an efficient and stable catalyst, exhibiting an order of magnitude higher activity towards alanine production from lactic acid compared to commercial CdS as well as CdS nanoobjects bearing other morphologies. Its unique catalytic property is attributed mainly to the preferential formation of oxygen-centered radicals to promote α-hydroxyl acids conversion to α-keto acids, and partially to the poor H2 evolution which is an undesired side reaction. Encouragingly, a number of amino acids are prepared using the current protocol, and one-pot photocatalytic conversion of glucose to alanine is also achieved. This work offers an effective catalytic system for amino acid synthesis from biomass feedstocks under mild conditions.
Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants that act as endocrine disruptors, affecting thyroid hormone homeostasis. As a follow-up to a recent study showing high PBDE levels in household cats and linking PBDE levels with cat hyperthyroidism, we measured PBDEs, polychlorinated biphenyls (PCBs), and organochlorinated pesticides (OCPs) in serum samples from 26 California household cats (16 hyperthyroid, 10 controls) using liquid-liquid extraction and high-resolution gas chromatography/high-resolution mass spectrometry. In the present pilot study, we found that PBDE levels in California house cats were extremely high (ΣPBDEs median = 2,904 ng/g lipid; range, 631-22,537 ng/g lipid). This is approximately 50 times higher than levels in California residents (ΣPBDEs geomean = 62 ± 8.9 ng/g lipid, National Health and Nutrition Examination Survey), who have among the highest human levels in the world. Polybrominated diphenyl ethers congener patterns (BDE-99 major congener, BDE-209 significant) differed markedly from patterns found in California residents (BDE-47 major) or wildlife but resembled patterns found in house dust. Polychlorinated biphenyls and OCPs in cats were highly correlated, consistent with a shared dietary source or pathway of exposure, but did not correlate with PBDEs. This suggests a different source or pathway of exposure for PBDEs, which was most likely house dust. The authors found no evidence that linked levels of PBDEs, PCBs, or OCPs with hyperthyroidism. This may be because of the small sample size, competing or confounding risk factors, or complicated causal mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.