Understanding the effects of mutations on protein stability is crucial for variant interpretation and prioritisation, protein engineering, and biotechnology. Despite significant efforts, community assessments of predictive tools have highlighted ongoing limitations, including computational time, low predictive power, and biased predictions towards destabilising mutations. To fill this gap, we developed DDMut, a fast and accurate siamese network to predict changes in Gibbs Free Energy upon single and multiple point mutations, leveraging both forward and hypothetical reverse mutations to account for model anti-symmetry. Deep learning models were built by integrating graph-based representations of the localised 3D environment, with convolutional layers and transformer encoders. This combination better captured the distance patterns between atoms by extracting both short-range and long-range interactions. DDMut achieved Pearson's correlations of up to 0.70 (RMSE: 1.37 kcal/mol) on single point mutations, and 0.70 (RMSE: 1.84 kcal/mol) on double/triple mutants, outperforming most available methods across non-redundant blind test sets. Importantly, DDMut was highly scalable and demonstrated anti-symmetric performance on both destabilising and stabilising mutations. We believe DDMut will be a useful platform to better understand the functional consequences of mutations, and guide rational protein engineering. DDMut is freely available as a web server and API at https://biosig.lab.uq.edu.au/ddmut.
Protein phosphorylation acts as an essential on/off switch in many cellular signaling pathways. This has led to ongoing interest in targeting kinases for therapeutic intervention. Computer‐aided drug discovery has been proven a useful and cost‐effective approach for facilitating prioritization and enrichment of screening libraries, but limited effort has been devoted providing insights on what makes a potent kinase inhibitor. To fill this gap, here we developed kinCSM, an integrative computational tool capable of accurately identifying potent cyclin‐dependent kinase 2 (CDK2) inhibitors, quantitatively predicting CDK2 ligand–kinase inhibition constants (pKi) and classifying different types of inhibitors based on their favorable binding modes. kinCSM predictive models were built using supervised learning and leveraged the concept of graph‐based signatures to capture both physicochemical properties and geometry properties of small molecules. CDK2 inhibitors were accurately identified with Matthew's Correlation Coefficients (MCC) of up to 0.74, and inhibition constants predicted with Pearson's correlation of up to 0.76, both with consistent performances of 0.66 and 0.68 on a nonredundant blind test, respectively. kinCSM was also able to identify the potential type of inhibition for a given molecule, achieving MCC of up to 0.80 on cross‐validation and 0.73 on the blind test. Analyzing the molecular composition of revealed enriched chemical fragments in CDK2 inhibitors and different types of inhibitors, which provides insights into the molecular mechanisms behind ligand–kinase interactions. kinCSM will be an invaluable tool to guide future kinase drug discovery. To aid the fast and accurate screening of CDK2 inhibitors, kinCSM is freely available at https://biosig.lab.uq.edu.au/kin_csm/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.