Lysosomal degradation of cytoplasmic components by autophagy is essential for cellular survival and homeostasis under nutrient-deprived conditions1–4. Acute regulation of autophagy by nutrient-sensing kinases is well defined3, 5–7, but longer-term transcriptional regulation is relatively unknown. Here we show that the fed-state sensing nuclear receptor FXR8, 9 and the fasting transcriptional activator CREB10, 11 coordinately regulate the hepatic autophagy gene network. Pharmacological activation of FXR repressed many autophagy genes and inhibited autophagy even in fasted mice and feeding-mediated inhibition of macroautophagy was attenuated in FXR-knockout mice. From mouse liver ChIP-seq data12–15, FXR and CREB binding peaks were detected at 178 and 112, respectively, of 230 autophagy-related genes, and 78 genes showed shared binding, mostly in their promoter regions. CREB promoted lipophagy, autophagic degradation of lipids16, under nutrient-deprived conditions, and FXR inhibited this response. Mechanistically, CREB upregulated autophagy genes, including Atg7, Ulk1, and Tfeb, by recruiting the coactivator CRTC2. After feeding or pharmacological activation, FXR trans-repressed these genes by disrupting the functional CREB/CRTC2 complex. This study identifies the novel FXR/CREB axis as a key physiological switch regulating autophagy, resulting in sustained nutrient regulation of autophagy during feeding/fasting cycles.
SIRT1 is an NAD+-dependent deacetylase that is implicated in prevention of many age-related diseases including metabolic disorders. Since SIRT1 deacetylase activity is dependent on NAD+ levels and the development of compounds that directly activate SIRT1 has been controversial, indirectly activating SIRT1 through enhancing NAD+ bioavailability has received increasing attention. NAD+ levels are reduced in obesity and the aged, but the underlying mechanisms remain unclear. We recently showed that hepatic microRNA-34a (miR-34a), which is elevated in obesity, directly targets and decreases SIRT1 expression. Here we further show that miR-34a reduces NAD+ levels and SIRT1 activity by targeting NAMPT, the rate-limiting enzyme for NAD+ biosynthesis. A functional binding site for miR-34a is present in the 3′ UTR of NAMPT mRNA. Hepatic overexpression of miR-34a reduced NAMPT/NAD+ levels, increased acetylation of the SIRT1 target transcriptional regulators, PGC-1α, SREBP-1c, FXR, and NF-κB, and resulted in obesity-mimetic outcomes. The decreased NAMPT/NAD+ levels were independent of miR-34a effects on SIRT1 levels since they were also observed in SIRT1 liver-specific knockout mice. Further, the miR-34a-mediated decreases were reversed by treatment with the NAD+ intermediate, nicotinamide mononucleotide. Conversely, antagonism of miR-34a in diet-induced obese mice restored NAMPT/NAD+ levels and alleviated steatosis, inflammation, and glucose intolerance. Anti-miR-34a-mediated increases in NAD+ levels were attenuated when NAMPT was downregulated. Our findings reveal a novel function of miR-34a in reducing both SIRT1 expression and activity in obesity. The miR-34a/NAMPT axis presents a potential target for treating obesity- and aging-related diseases involving SIRT1 dysfunction like steatosis and type 2 diabetes.
Autophagy, a vacuolar degradative pathway, constitutes a stress adaptation that avoids cell death or elicits the alternative cell-death pathway. This study was undertaken to determine whether autophagy is activated in palmitate (PA)-treated beta-cells and, if activated, what the role of autophagy is in the PA-induced beta-cell death. The enhanced formation of autophagosomes and autolysosomes was observed by exposure of INS-1 beta-cells to 400 microm PA in the presence of 25 mm glucose for 12 h. The formation of green fluorescent protein-LC3-labeled structures (green fluorescent protein-LC3 dots), with the conversion from LC3-I to LC3-II, was also distinct in the PA-treated cells. The phospho-mammalian target of rapamycin level, a typical signal pathway that inhibits activation of autophagy, was gradually decreased by PA treatment. Blockage of the mammalian target of rapamycin signaling pathway by treatment with rapamycin augmented the formation of autophagosomes but reduced PA-induced INS-1 cell death. In contrast, reduction of autophagosome formation by knocking down the ATG5, inhibition of fusion between autophagosome and lysosome by treatment with bafilomycin A1, or inhibition of proteolytic degradation by treatment with E64d/pepstatin A, significantly augmented PA-induced INS-1 cell death. These findings showed that the autophagy system could be activated in PA-treated INS-1 beta-cells, and suggested that the induction of autophagy might play an adaptive and protective role in PA-induced cell death.
Aims/hypothesis Obesity and insulin resistance are associated with low-grade chronic inflammation. Glucagon-like peptide-1 (GLP-1) is known to reduce insulin resistance. We investigated whether GLP-1 has anti-inflammatory effects on adipose tissue, including adipocytes and adipose tissue macrophages (ATM). Methods We administered a recombinant adenovirus (rAd) producing GLP-1 (rAd-GLP-1) to an ob/ob mouse model of diabetes. We examined insulin sensitivity, body fat mass, the infiltration of ATM and metabolic profiles. We analysed the mRNA expression of inflammatory cytokines, lipogenic genes, and M1 and M2 macrophage-specific genes in adipose tissue by real-time quantitative PCR. We also examined the activation of nuclear factor κB (NF-κB), extracellular signalregulated kinase 1/2 and Jun N-terminal kinase (JNK) in vivo and in vitro. Results Fat mass, adipocyte size and mRNA expression of lipogenic genes were significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Macrophage populations (F4/80 + and F4/80 + CD11b + CD11c + cells), as well as the expression and production of IL-6, TNF-α and monocyte chemoattractant protein-1, were significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Expression of M1-specific mRNAs was significantly reduced, but that of M2-specific mRNAs was unchanged in rAd-GLP-1-treated ob/ob mice. NF-κB and JNK activation was significantly reduced in adipose tissue of rAd-GLP-1-treated ob/ob mice. Lipopolysaccharide-induced inflammation was reduced by the GLP-1 receptor agonist, exendin-4, in 3T3-L1 adipocytes and ATM. Conclusions/interpretation We suggest that GLP-1 reduces macrophage infiltration and directly inhibits inflammatory pathways in adipocytes and ATM, possibly contributing to the improvement of insulin sensitivity.
Glutamic acid decarboxylase (GAD) is a pancreatic beta cell autoantigen in humans and nonobese diabetic (NOD) mice. beta Cell-specific suppression of GAD expression in two lines of antisense GAD transgenic NOD mice prevented autoimmune diabetes, whereas persistent GAD expression in the beta cells in the other four lines of antisense GAD transgenic NOD mice resulted in diabetes, similar to that seen in transgene-negative NOD mice. Complete suppression of beta cell GAD expression blocked the generation of diabetogenic T cells and protected islet grafts from autoimmune injury. Thus, beta cell-specific GAD expression is required for the development of autoimmune diabetes in NOD mice, and modulation of GAD might, therefore, have therapeutic value in type 1 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.