Autophagy, a vacuolar degradative pathway, constitutes a stress adaptation that avoids cell death or elicits the alternative cell-death pathway. This study was undertaken to determine whether autophagy is activated in palmitate (PA)-treated beta-cells and, if activated, what the role of autophagy is in the PA-induced beta-cell death. The enhanced formation of autophagosomes and autolysosomes was observed by exposure of INS-1 beta-cells to 400 microm PA in the presence of 25 mm glucose for 12 h. The formation of green fluorescent protein-LC3-labeled structures (green fluorescent protein-LC3 dots), with the conversion from LC3-I to LC3-II, was also distinct in the PA-treated cells. The phospho-mammalian target of rapamycin level, a typical signal pathway that inhibits activation of autophagy, was gradually decreased by PA treatment. Blockage of the mammalian target of rapamycin signaling pathway by treatment with rapamycin augmented the formation of autophagosomes but reduced PA-induced INS-1 cell death. In contrast, reduction of autophagosome formation by knocking down the ATG5, inhibition of fusion between autophagosome and lysosome by treatment with bafilomycin A1, or inhibition of proteolytic degradation by treatment with E64d/pepstatin A, significantly augmented PA-induced INS-1 cell death. These findings showed that the autophagy system could be activated in PA-treated INS-1 beta-cells, and suggested that the induction of autophagy might play an adaptive and protective role in PA-induced cell death.
ProblemThe temporal dynamics of different seagrass species in the same locality exhibit similar responses to seasonal forcing, but the magnitude of fluctuations in seasonal growth is species-dependent (Marba et al. 1996). In temperate waters, the strong seasonality of seagrasses responds, in the form of plant growth, to seasonal variation in light and temperature (Phillips et al. 1983; Olesen & SandJensen 1994;Laugier et al. 1999). A comparative analysis of the growth dynamics of different seagrass species forming monospecific meadows showed that differences in shoot growth and species-specific differences in seasonal dynamics are associated with differences in seagrass size. Large species are longer-lived and slower-growing, whereas smaller species are shorter-lived and grow faster (Duarte 1991;Marba et al. 1996). Seagrass size differences may determine the type of environment they occupy; small species usually inhabit frequently disturbed habitats, whereas large seagrasses require more stable environments AbstractThe temporal dynamics of two seagrass species, Zostera marina and Z. japonica, were monitored monthly in Dadae Bay, Geoje Island, on the southern coast of Korea. Plant morphological characteristics, shoot density, biomass, leaf production, reproductive effort, and environmental characteristics were monitored from July 2001 to July 2002. Zostera japonica occurred in the intertidal zone and Z. marina occurred in the subtidal zone from 0.5 to 2.5 m below the mean low water level. Shoots and rhizomes were significantly larger in Z. marina than in Z. japonica, whereas the shoot density was greater in Z. japonica than in Z. marina. Despite differences in morphology and shoot density, biomass did not differ significantly between the species. Reproduction occurred from April to June in Z. marina and from May to July in Z. japonica. The proportion of reproductive shoots was approximately three times higher in Z. marina than in Z. japonica. Seasonal variation in the biomass of Z. japonica was caused by changes in both shoot size and density, whereas that of Z. marina was mainly caused by changes in shoot length. Leaf production in Z. marina and Z. japonica showed clear seasonal variation, and leaf production in Z. marina (2.6 ± 0.2 g DWAEm )2 AEday )1 ) was higher than that in Z. japonica (1.7 ± 0.2 g DWAEm )2 AEday )1 ). The mean plastochrone interval was not significantly different between the two species, whereas the leaf lifetime of Z. marina was longer (69 ± 7.8 days) than that of Z. japonica (59 ± 8.3 days). Our results indicated that seasonal leaf growth patterns in Z. japonica are correlated with irradiance and temperature, whereas those in Z. marina respond most to irradiance. Seasonal changes in irradiance appeared to control the temporal variation in above-ground biomass in both species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.