Abstrak -Bagi orang-orang yang bergerak di bidang fashion mengetahui tren fashion adalah hal yang penting. Salah satu cara untuk mengetahui tren adalah dengan mendeteksi topik mengenai fashion yang dibicarakan di media sosial. Penelitian ini mengimplementasikan algoritma Latent Dirichlet Allocation untuk mendeteksi topik fashion di Twitter. Tweet yang didapat, diklasifikasi dengan metode Naive Bayes lalu dibersihkan dengan cara menghapus URL, simbol, angka dan merubah setiap kata menjadi huruf kecil. Tweet lalu dibentuk menjadi kumpulan kata dan dikelompokan dengan algoritma Latent Dirichlet Allocation. Berdasarkan hasil eksperimen, konfigurasi paramater 20 topik dengan 1000 iterasi memperoleh skor UMass terbaik dengan nilai -56.342, dan konfigurasi parameter 50 topik dengan 1000 iterasi memperoleh skor PMI terbaik dengan nilai 6.272.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.