MCScan is an algorithm able to scan multiple genomes or subgenomes in order to identify putative homologous chromosomal regions, and align these regions using genes as anchors. The MCScanX toolkit implements an adjusted MCScan algorithm for detection of synteny and collinearity that extends the original software by incorporating 14 utility programs for visualization of results and additional downstream analyses. Applications of MCScanX to several sequenced plant genomes and gene families are shown as examples. MCScanX can be used to effectively analyze chromosome structural changes, and reveal the history of gene family expansions that might contribute to the adaptation of lineages and taxa. An integrated view of various modes of gene duplication can supplement the traditional gene tree analysis in specific families. The source code and documentation of MCScanX are freely available at http://chibba.pgml.uga.edu/mcscan2/.
Pyroptosis is a form of cell death that is critical for immunity. It can be induced by the canonical caspase-1 inflammasomes or by activation of caspase-4, -5 and -11 by cytosolic lipopolysaccharide. The caspases cleave gasdermin D (GSDMD) in its middle linker to release autoinhibition on its gasdermin-N domain, which executes pyroptosis via its pore-forming activity. GSDMD belongs to a gasdermin family that shares the pore-forming domain. The functions and mechanisms of activation of other gasdermins are unknown. Here we show that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis. GSDME was specifically cleaved by caspase-3 in its linker, generating a GSDME-N fragment that perforates membranes and thereby induces pyroptosis. After chemotherapy, cleavage of GSDME by caspase-3 induced pyroptosis in certain GSDME-expressing cancer cells. GSDME was silenced in most cancer cells but expressed in many normal tissues. Human primary cells exhibited GSDME-dependent pyroptosis upon activation of caspase-3 by chemotherapy drugs. Gsdme (also known as Dfna5) mice were protected from chemotherapy-induced tissue damage and weight loss. These findings suggest that caspase-3 activation can trigger necrosis by cleaving GSDME and offer new insights into cancer chemotherapy.
The genome of the mesopolyploid crop species Brassica rapaThe Brassica rapa Genome Sequencing Project Consortium 1 Abstract:The Brassicaceae family which includes Arabidopsis thaliana, is a natural priority for reaching beyond botanical models to more deeply sample angiosperm genomic and functional diversity. Here we report the draft genome sequence and its annoation of Brassica rapa, one of the two ancestral species of oilseed rape. We modeled 41,174 protein-coding genes in the B. rapa genome. B. rapa has experienced only the second genome triplication reported to date, with its close relationship to A. thaliana providing a useful outgroup for investigating many consequences of triplication for its structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one copy containing a greater proportion of genes expected to have been present in its ancestor (70%) than the remaining two (46% and 36%). Both a generally rapid evolutionary rate, and specific copy number amplifications of particular gene families, may contribute to the remarkable propensity of Brassica species for the development of new morphological variants. The B. rapa genome provides a new resource for comparative and evolutionary analysis of the Brassicaceae genomes and also a platform for genetic improvement of Brassica oil and vegetable crops.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.