Among the existing models for compressible fluids, the one by Kataoka and Tsutahara (KT model, Phys. Rev. E 69, 056702, 2004) has a simple and rigorous theoretical background. The drawback of this KT model is that it can cause numerical instability if the local Mach number exceeds 1. The precise mechanism of this instability has not yet been clarified. In this paper, we derive entropy functions whose local equilibria are suitable to recover the Euler-like equations in the framework of the lattice Boltzmann method for the KT model. Numerical examples are also given, which are consistent with the above theoretical arguments, and show that the entropy condition is not fully guaranteed in KT model. The negative entropy may be the inherent cause for the non-physical oscillations in the vicinity of the shock. In contrast to these Karlin's microscopic entropy approach, the corresponding subsidiary entropy condition in the LBM calculation could also be deduced explicitly from the macroscopic version, which provides some insights on the numerical instability of the lattice Boltzmann model for shock calculation.
We derive the entropy functions whose local equilibria are suitable to recover the Euler-like equations in the framework of the lattice Boltzmann method. Numerical examples are also given, which are consistent with the above theoretical arguments. In all cases, we observe a negative entropy range existing near the shock, while numerical oscillations are captured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.