Breast carcinoma is the most common female cancer with considerable metastatic potential. Discovery of new therapeutic approaches for treatment of metastatic breast cancer is still needed. Here, we reported our finding with niclosamide, an FDA approved anthelmintic drug. The potency of niclosamide on breast cancer was assessed in vitro and in vivo. In this investigation, we found that niclosamide showed a dramatic growth inhibition against breast cancer cell lines and induced apoptosis of 4T1 cells in a dose-dependent manner. Further, Western blot analysis demonstrated the occurrence of its apoptosis was associated with activation of Cleaved caspases-3, down-regulation of Bcl-2, Mcl-1 and Survivin. Moreover, niclosamide blocked breast cancer cells migration and invasion, and the reduction of phosphorylated STAT3Tyr705, phosphorylated FAKTyr925 and phosphorylated SrcTyr416 were also observed. Furthermore, in our animal experiments, intraperitoneal administration of 20 mg/kg/d niclosamide suppressed 4T1 tumor growth without detectable toxicity. Histological and immunohistochemical analyses revealed a decrease in Ki67-positive cells, VEGF-positive cells and microvessel density (MVD) and an increase in Cleaved caspase-3-positive cells upon niclosamide. Notably, niclosamide reduced the number of myeloid-derived suppressor cells (MDSCs) in tumor tissues and blocked formation of pulmonary metastases. Taken together, these results demonstrated that niclosamide may be a promising candidate for breast cancer.
Acute liver failure (ALF) is a life-threatening illness. The extracorporeal cell-based bioartificial liver (BAL) system could bridge liver transplantation and facilitate liver regeneration for ALF patients by providing metabolic detoxification and synthetic functions. Previous BAL systems, based on hepatoma cells and non-human hepatocytes, achieved limited clinical advances, largely due to poor hepatic functions, cumbersome preparation or safety concerns of these cells. We previously generated human functional hepatocytes by lineage conversion (hiHeps). Here, by improving functional maturity of hiHeps and producing hiHeps at clinical scales (3 billion cells), we developed a hiHep-based BAL system (hiHep-BAL). In a porcine ALF model, hiHep-BAL treatment restored liver functions, corrected blood levels of ammonia and bilirubin, and prolonged survival. Importantly, human albumin and α-1-antitrypsin were detectable in hiHep-BAL-treated ALF pigs. Moreover, hiHep-BAL treatment led to attenuated liver damage, resolved inflammation and enhanced liver regeneration. Our findings indicate a promising clinical application of the hiHep-BAL system.
The influence of the chiral mean field on the $K^+$ transverse flow in heavy
ion collisions at SIS energy is investigated within covariant kaon dynamics.
For the kaon mesons inside the nuclear medium a quasi-particle picture
including scalar and vector fields is adopted and compared to the standard
treatment with a static potential. It is confirmed that a Lorentz force from
spatial component of the vector field provides an important contribution to the
in-medium kaon dynamics and strongly counterbalances the influence of the
vector potential on the $K^+$ in-plane flow. The FOPI data can be reasonably
described using in-medium kaon potentials based on effective chiral models. The
information on the in-medium $K^+$ potential extracted from kaon flow is
consistent with the knowledge from other sources.Comment: 24 pages, 6 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.