Rice is one of the most important food crops in the world and is of vital importance to many countries. Various diseases caused by fungi, bacteria and viruses constantly threaten rice plants and cause yield losses. Bacterial leaf streak disease (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most devastating rice diseases. However, most modern rice varieties are susceptible to BLS. In this study, we applied the QTL-seq approach using an F2 population derived from the cross between IR62266 and Homcholasit (HSC) to rapidly identify the quantitative trait loci (QTL) that confers resistance to BLS caused by a Thai Xoc isolate, SP7-5. The results showed that a single genomic region at the beginning of chromosome 5 was highly associated with resistance to BLS. The gene xa5 was considered a potential candidate gene in this region since most associated single nucleotide polymorphisms (SNPs) were within this gene. A Kompetitive Allele-Specific PCR (KASP) marker was developed based on two consecutive functional SNPs in xa5 and validated in six F2 populations inoculated with another Thai Xoc isolate, 2NY2-2. The phenotypic variance explained by this marker (PVE) ranged from 59.04% to 70.84% in the six populations. These findings indicate that xa5 is a viable candidate gene for BLS resistance and may help in breeding programs for BLS resistance.
Dirty panicle disease is one of the most important diseases that can cause yield losses in rice production. Despite the severity of the disease, the molecular basis of resistance to the pathogen is poorly understood. Using QTL-seq with an F2 population, we identified three genomic regions on chromosomes 1, 9, and 10, namely qDP1, qDP9, and qDP10. These regions are significantly associated with resistance to dirty panicle disease caused by two fungal pathogens, Bioplaris oryzae and Cirvularia lunata. qDP1 was significantly associated only with resistance to B. oryzae, whereas qDP9 and qDP10 were significantly associated with both B. oryzae and C. lunata. We also developed KASP markers for each QTL detected and validated them in the F2 population. The markers were able to explain phenotypic variation in a range of 5.87–15.20%. Twelve potential candidate genes with annotated functions as resistance-related genes were proposed. These candidate genes include those encoding RLK, MATE, WAK, NBS-LRR, subtilisin-like protease, and ankyrin repeat proteins. The results of this study provide insights into the genetic mechanism of dirty panicles in rice and will be useful for future breeding programs for dirty panicle resistance. This is the first report of QTLs associated with resistance to dirty panicle disease in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.