Protein-encapsulated gold nanoclusters have shown many advantages over other gold nanocluster systems, including green synthesis, biocompatibility, high water solubility, and the ease of further conjugation. In this article, we systematically investigated the effects of the protein size and amino acid content on the formation and fluorescent properties of gold nanoclusters using four model proteins (bovine serum albumin, lysozyme, trypsin, and pepsin). We discovered that the balance of amine and tyrosine/tryptophan containing residues was critical for the nanocluster formation. Protein templates with low cysteine contents caused blue shifts in the fluorescent emissions and difference in fluorescent lifetimes of the gold nanoclusters. Furthermore, the protein size was found to be a critical factor for the photostability and long-term stability of gold nanoclusters. The size of the protein also affected the Au nanocluster behaviour after immobilization.
The water dispensability and stability of high quality iron oxide nanoparticles synthesized in organic solvents are major issues for biomedical and biological applications. In this paper, a versatile approach for preparing water-soluble iron oxide nanoparticles with great stability and selective surface functionality (-COOH, -NH(2), or -SH) was demonstrated. The hydrophobic nanoparticles were first synthesized by the thermal decomposition of an iron oleate complex in organic solvent. Subsequently, the hydrophobic coatings of nanoparticles were replaced with poly(acrylic acid) , polyethylenimine, or glutathione, yielding charged nanoparticles in aqueous solution. Two parameters were found to be critical for obtaining highly stable nanoparticle dispersions: the original coating and the surfactant-to-nanoparticle ratio. These charged nanoparticles exhibited different stabilities in biological buffers, which were directly influenced by the surface coatings. This report will provide significant practical value in exploring the biological or biomedical applications of iron oxide nanoparticles.
This review discusses several aspects regarding ultrasmall magnetic nanoparticles asT1contrast agents, including synthesis, parameters affectingT1, and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.