Zinc-finger nucleases (ZFNs) have enabled highly efficient gene targeting in multiple cell types and organisms. Here we describe methods for using simple ssDNA oligonucleotides in tandem with ZFNs to efficiently produce human cell lines with three distinct genetic outcomes: (i) targeted point mutation, (ii) targeted genomic deletion of up to 100 kb and (iii) targeted insertion of small genetic elements concomitant with large genomic deletions.
Hepatoblastoma (HB) is the most common primary liver tumor in children. Mutations in the b-catenin gene that lead to constitutive activation of the Wnt pathway have been detected in a large proportion of HB tumors. To identify novel mutations in HB, we performed whole-exome sequencing of six paired HB tumors and their corresponding lymphocytes. This identified 24 somatic nonsynonymous mutations in 21 genes, many of which were novel, including three novel mutations targeting the CTNNB1 (G512V) and CAPRIN2 (R968H/S969C) genes in the Wnt pathway, and genes previously shown to be involved in the ubiquitin ligase complex (SPOP, KLHL22, TRPC4AP, and RNF169). Functionally, both the CTNNB1 (G512V) and CAPRIN2 (R968H/S969C) were observed to be gain-of-functional mutations, and the CAPRIN2 (R968H/S969C) was also shown to activate the Wnt pathway in HB cells. These findings suggested the activation of the Wnt pathway in HB, which was confirmed by immunohistochemical staining of the b-catenin in 42 HB tumors. We further used short hairpin RNA (shRNA)-mediated interference to assess the effect of 21 mutated genes on HB cell survival. The results suggested that one novel oncogene (CAPRIN2) and three tumor suppressors (SPOP, OR5I1, and CDC20B) influence HB cell growth. Moreover, we found that SPOP S119N is a loss-of-function mutation in HB cells. We finally demonstrated that one of the mechanisms by which SPOP inhibits HB cell proliferation is through regulating CDKN2B expression. Conclusion: These results extend the landscape of genetic alterations in HB and highlight the dysregulation of Wnt and ubiquitin pathways in HB tumorigenesis.
The breast cancer susceptibility gene 1 (BRCA1) plays a key role in mammary tumorigenesis. However, the reasons why silencing the Brca1 gene leads to tumorigenesis are not clearly understood. We report here that BRCA1 deficiency activates the AKT oncogenic pathway, one of the most common alterations associated with human malignancy. Mutation of Brca1 gene increases the phosphorylation and the kinase activity of AKT. The BRCA1-BRCT domains bind to phosphorylated AKT (pAKT) and lead to its ubiquitination toward protein degradation. BRCA1 mutant cells lacking the BRCT repeats accumulate nuclear pAKT and consequently inactivate the transcription functions of FOXO3a, a main nuclear target of pAKT. Our results show that BRCA1 is a negative regulator of the AKT pathway and imply the significance of the BRCA1/ AKT pathway in tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.