D-Amino acids are increasingly being recognized as important signaling molecules, and abnormal levels of D-amino acids have been implicated in the pathogenesis of Alzheimer's disease. To evaluate the potential relationship between Alzheimer's disease and D-amino acids, a simple, sensitive, and reliable UPLC-MS/MS method with pre-column derivatization was developed and validated for simultaneous determination of 18 D-amino acids in rat plasma. The analytes were extracted from plasma samples by a protein precipitation procedure, and then derivatized with (S)-N-(4-nitrophenoxycarbonyl) phenylalanine methoxyethyl ester [(S)-NIFE]. Chromatographic separation was achieved using an ACQUITY UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with a mobile phase composed of acetonitrile containing 8 mM ammonium hydrogen carbonate at a flow rate of 0.6 mL min(-1). The analytes were detected by electrospray ionization in positive ion multiple reaction monitoring modes. Under the optimum experimental conditions, all the linear regressions were acquired with r > 0.9932. The limits of quantitation of all derivatized D-amino acids were within 0.05-40.0 ng mL(-1) in rat plasma. The intra- and inter-day precisions, expressed as percentage relative standard deviations (%RSD), were within the range of 12.3 and 10.1%, respectively. The recoveries for all the analytes were observed over the range of 82.8-100.5% with RSD values less than 12.5%. Finally, the proposed method was successfully applied to simultaneous determination of the 18 D-amino acids in plasma from Alzheimer's disease rats and age-matched normal controls. Results showed that the concentrations of D-serine, D-aspartate, D-alanine, D-leucine, and D-proline in Alzheimer's disease rat plasma were significantly decreased compared with those in normal controls, while D-phenylalanine levels increased. It was revealed that some of these D-amino acids would be potential diagnostic biomarkers for Alzheimer's disease.
A HPLC-MS/MS method was developed for the simultaneous determination of nine kinds of (d)- and (l)-amino acid enantiomers and applied to control the quality of amino acid tablets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.