Metamaterial induced transparency is demonstrated using individual split ring resonators with two gaps on opposite side. For the symmetric structure, only a low quality dipolar resonance is witnessed at a normal incidence excited with electric field along the resonator gaps. Displacement of one gap from the centre breaks the symmetry and a higher order mode, inaccessible in the symmetric structure, is excited. Coherent interaction among the modes in the split ring resonator forms an extremely sharp narrowband transparency window centred directly at the dipole resonance. Such metamaterial could facilitate coherent manipulation of terahertz signals for delay, storage, and nonlinear applications.
We report the simultaneous excitation of the odd and the even eigenmode resonances in a periodic array of square split-ring resonators, with four resonators per unit cell. When the electric field is parallel to their gaps, only the two well-studied odd eigenmodes are excited. As the resonators are rotated relative to one another, we observe the emergence and excitation of an extremely sharp even eigenmode. In uncoupled split-ring resonators, this even eigenmode is typically radiative in nature with a broad resonance linewidth and low Q-factor. However, in our coupled system, for specific range of rotation angles, our simulations revealed a remarkably high quality factor (Q 100) for this eigenmode, which has sub-radiant characteristics. This type of quad-supercell metamaterial offers the advantage of enabling access to all the three distinct resonance features of the split-ring resonator, which consists of two odd eigenmodes in addition to the high-Q even eigenmode, which could be exploited for high performance multiband filters and absorbers. The high Q even eigenmode could find applications in designing label free bio-sensors and for studying the enhanced light matter interaction effects. V
Combined with terahertz spectroscopy, partial least squares-discriminant analysis and support vector machines could be novel and effective diagnosis methods for cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.