The hyperspectral image compression scheme is a trade-off between the limited hardware resources of the on-board platform and the ever-growing resolution of the optical instruments. Predictive coding attracts researchers due to its low computational complexity and moderate memory requirements. We propose a near-lossless prediction-based compression scheme that removes spatial and spectral redundant information, thereby significantly reducing the size of hyperspectral images. This scheme predicts the target pixel’s value via a linear combination of previous pixels. The weight matrix of the predictor is iteratively updated using a recursive least squares filter with a loop quantizer. The optimal number of bands for prediction was analyzed experimentally. The results indicate that the proposed scheme outperforms state-of-the-art compression methods in terms of the compression ratio and quality retrieval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.