TarGuess − I is a leading online targeted password guessing model using users’ personally identifiable information (PII) proposed at ACM CCS 2016 by Wang et al. It has attracted widespread attention in password security owing to its superior guessing performance. Yet, after analyzing the users’ vulnerable behaviors of using popular passwords and constructing passwords with users’ PII, we find that this model does not take into account popular passwords, keyboard patterns, and the special strings. The special strings are the strings related to users but do not appear in the users’ demographic information. Thus, we propose TarGuess − I + K P X , a modified password guessing model with three semantic methods, including (1) identifying popular passwords by generating top-300 lists from similar websites, (2) recognizing keyboard patterns by relative position, and (3) catching the special strings by extracting continuous characters from user-generated PII. We conduct a series of evaluations on six large-scale real-world leaked password datasets. The experimental results show that our modified model outperforms TarGuess − I by 2.62% within 100 guesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.