The electrification of transport requires dielectric materials capable of operating efficiently at high temperatures to meet the increasing demand of electrical energy storage at extreme conditions. Current high-temperature dielectric polymers rely on the incorporation of wide bandgap inorganic fillers to restrain electrical conduction and achieve high efficiencies at elevated temperatures. Here, we report a new class of all-polymer based high-temperature dielectric materials prepared from crosslinking of melt-processable fluoropolymers. The crosslinked polymers exhibit larger discharged energy densities and greater charge-discharge efficiencies along with excellent breakdown strength and cyclic stability at elevated temperatures when compared to the current dielectric polymers. The origins of the marked improvement in the hightemperature capacitive performance are traced to efficient charge-trapping by a range of the molecular trapping centers resulted from the crosslinked structures. In addition, the implementation of melt-extrudable polymers would enable scalable processing that is compatible with the current fabrication techniques used for polymer dielectrics, which is in sharp contrast to the dielectric polymer composites with inorganic fillers.
Protein post-translational modifications (PTMs) play an important role in different cellular processes. In view of the importance of PTMs in cellular functions and the massive data accumulated by the rapid development of mass spectrometry (MS)-based proteomics, this paper presents an update of dbPTM with over 2 777 000 PTM substrate sites obtained from existing databases and manual curation of literature, of which more than 2 235 000 entries are experimentally verified. This update has manually curated over 42 new modification types that were not included in the previous version. Due to the increasing number of studies on the mechanism of PTMs in the past few years, a great deal of upstream regulatory proteins of PTM substrate sites have been revealed. The updated dbPTM thus collates regulatory information from databases and literature, and merges them into a protein-protein interaction network. To enhance the understanding of the association between PTMs and molecular functions/cellular processes, the functional annotations of PTMs are curated and integrated into the database. In addition, the existing PTM-related resources, including annotation databases and prediction tools are also renewed. Overall, in this update, we would like to provide users with the most abundant data and comprehensive annotations on PTMs of proteins. The updated dbPTM is now freely accessible at https://awi.cuhk.edu.cn/dbPTM/.
The design of highly stable and efficient porous materials is essential for developing breakthrough hydrocarbon separation methods based on physisorption to replace currently used energy‐intensive distillation/absorption technologies. Efforts to develop advanced porous materials such as zeolites, coordination frameworks, and organic polymers have met with limited success. Here, a new class of ionic ultramicroporous polymers (IUPs) with high‐density inorganic anions and narrowly distributed ultramicroporosity is reported, which are synthesized by a facile free‐radical polymerization using branched and amphiphilic ionic compounds as reactive monomers. A covalent and ionic dual‐crosslinking strategy is proposed to manipulate the pore structure of amorphous polymers at the ultramicroporous scale. The IUPs exhibit exceptional selectivity (286.1–474.4) for separating acetylene from ethylene along with high thermal and water stability, collaboratively demonstrated by gas adsorption isotherms and experimental breakthrough curves. Modeling studies unveil the specific binding sites for acetylene capture as well as the interconnected ultramicroporosity for size sieving. The porosity‐engineering protocol used in this work can also be extended to the design of other ultramicroporous materials for the challenging separation of other key gas constituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.