Pseudocapacitive materials generally offer both high capacitance and high rate capability, which has stimulated great efforts in developing the materials system and related energy storage devices. In recent years, however, with the extensive use of nanomaterials in batteries, fast redox kinetics comparable to pseudocapacitive have been achieved in many kinds of battery materials due to the much shortened ion diffusion lengths and highly exposed surface/interface as a result of nanosize effect. Consequently, the terms “pseudocapacitive materials” and “battery materials” are becoming more and more confusing. In this review, different opinions on the definition of pseudocapacitive materials and the evolution of the definitions as well as the resulting confusion will be firstly reviewed. Then, to accurately distinguish pseudocapacitive and battery materials, method with the consideration of both the electrochemical signatures (CVs and GCD) and quantitative kinetics analysis as a supplement is proposed. Finally, we end this review by discussing the possible device configurations of asymmetric supercapacitors and hybrid supercapacitors. The present review will help understanding the differences between pseudocapacitive materials and battery materials, and thus avoiding the definition confusion.
MnO2 is one of the most studied cathodes for aqueous neutral zinc‐ion batteries. However, the diverse reported crystal structures of MnO2 compared to δ‐MnO2 inevitably suffer a structural phase transition from tunneled to layered Zn‐buserite during the initial cycles, which is not as kinetically direct as the conventional intercalation electrochemistry in layered materials and thus poses great challenges to the performance and multifunctionality of devices. Here, a binder‐free δ‐MnO2 cathode is designed and a favorable “layered to layered” Zn2+ storage mechanism is revealed systematically using such a “noninterferencing” electrode platform in combination with ab initio calculation. A flexible quasi‐solid‐state Zn–Mn battery with an electrodeposited flexible Zn anode is further assembled, exhibiting high energy density (35.11 mWh cm−3; 432.05 Wh kg−1), high power density (676.92 mW cm−3; 8.33 kW kg−1), extremely low self‐discharge rate, and ultralong stability up to 10 000 cycles. Even with a relatively high δ‐MnO2 mass loading of 5 mg cm−2, significant energy and power densities are still achieved. The device also works well over a broad temperature range (0–40 °C) and can efficiently power different types of small electronics. This work provides an opportunity to develop high‐performance multivalent‐ion batteries via the design of a kinetically favorable host structure.
Background
Neuroinflammation is an essential player in many neurological diseases including traumatic brain injury (TBI). Recent studies have identified that inflammasome complexes are responsible for inflammatory responses in many pathological conditions. Inflammasomes are intracellular multiprotein complexes which regulate the innate immune response, activation of caspase-1, production of pro-inflammatory cytokines IL-1β and IL-18, and induction of cell death (pyroptosis). Among inflammasome family members, the nucleotide-binding domain leucine-rich repeats family protein 3 (NLRP3) is the most extensively studied and its activation is induced following TBI. As a novel target, drug development targeting the formation and activation of NLRP3 inflammasome is a prospective therapy for TBI. We have recently developed a small molecule JC124 with specificity on NLRP3 inflammasome. In this study, we explored the therapeutic value of JC124 for TBI treatment.
Methods
Adult male Sprague-Dawley rats were subjected to a moderate cortical impact injury. Following TBI, animals received 4 doses of JC124 treatment with the first dose starting at 30 min, the second dose at 6 h after TBI, the third and fourth doses at 24 or 30 h following TBI, respectively. Animals were sacrificed at 2 days post-injury. Brain tissues were processed either for ELISA and western blotting analysis for inflammatory response, or for histological examination to assess degenerative neurons, acute inflammatory cell response and lesion volume.
Results
We found that post-injury treatment with JC124 significantly decreased the number of injury-induced degenerating neurons, inflammatory cell response in the injured brain, and cortical lesion volume. Injured animals treated with JC124 also had significantly reduced protein expression levels of NLRP3, ASC, IL-1 beta, TNFα, iNOS, and caspase-1.
Conclusion
Our data suggest that our novel NLRP3 inhibitor has a specific anti-inflammatory effect to protect the injured brain following TBI.
Pharmacological inhibition of histone deacetylases (HDACs) has been successfully applied in the treatment of a wide range of disorders, including Parkinson's disease, infection, cardiac diseases, inflammation, and especially cancer. HDAC inhibitors (HDACIs) have been proved to be effective antitumor agents by various stages of investigation. At present, there are two opposite focuses of HDACI design in the cancer therapy, highly selective inhibitor strategy and dual- or multitargeted inhibitors. The former method, which is supposed to elucidate the function of individual HDAC and provide candidate inhibitors with fewer side effects, has been widely accepted by the inhibitor developer. The latter approach, though less practiced, has promising potential for the antitumor therapy based on HDACIs. Effective HDACIs, some of which are in clinic anticancer research, have been developed by both methods. In order to gain insight into HDACI design, the strategies and achievements of the two diverse methods are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.