The selective radical/radical cross-coupling of two different organic radicals is a great challenge due to the inherent activity of radicals. In this paper, a copper-catalyzed radical/radical C(sp 3)-H/P-H cross-coupling has been developed. It provides a radical/radical cross-coupling in a selective manner. This work offers a simple way toward β-ketophosphonates by oxidative coupling of aryl ketone o-acetyloximes with phosphine oxides using CuCl as catalyst and PCy3 as ligand in dioxane under N2 atmosphere at 130 °C for 5 h, and yields ranging from 47% to 86%. The preliminary mechanistic studies by electron paramagnetic resonance (EPR) showed that, 1) the reduction of ketone o-acetyloximes generates iminium radicals, which could isomerize to α-sp(3) -carbon radical species; 2) phosphorus radicals were generated from the oxidation of phosphine oxides. Various aryl ketone o-acetyloximes and phosphine oxides were suitable for this transformation.
Leukemia stem cells (LSCs) are regarded as the origins and key therapeutic targets of leukemia, but limited knowledge is available on the key determinants of LSC ‘stemness’. Using single-cell RNA-seq analysis, we identify a master regulator, SPI1, the LSC-specific expression of which determines the molecular signature and activity of LSCs in the murine Pten-null T-ALL model. Although initiated by PTEN-controlled β-catenin activation, Spi1 expression and LSC ‘stemness’ are maintained by a β-catenin-SPI1-HAVCR2 regulatory circuit independent of the leukemogenic driver mutation. Perturbing any component of this circuit either genetically or pharmacologically can prevent LSC formation or eliminate existing LSCs. LSCs lose their ‘stemness’ when Spi1 expression is silenced by DNA methylation, but Spi1 expression can be reactivated by 5-AZ treatment. Importantly, similar regulatory mechanisms may be also present in human T-ALL.
Myeloid differentiation protein 1 (MD1) has been implicated in numerous pathophysiological processes, including immune regulation, obesity, insulin resistance, and inflammation. However, the role of MD1 in cardiac remodelling remains incompletely understood. We used MD1-knockout (KO) mice and their wild-type littermates to determine the functional significance of MD1 in the regulation of aortic banding (AB)-induced left ventricular (LV) structural and electrical remodelling and its underlying mechanisms. After 4 weeks of AB, MD1-KO hearts showed substantial aggravation of LV hypertrophy, fibrosis, LV dilation and dysfunction, and electrical remodelling, which resulted in overt heart failure and increased electrophysiological instability. Moreover, MD1-KO-AB cardiomyocytes showed increased diastolic sarcoplasmic reticulum (SR) Ca2+ leak, reduced Ca2+ transient amplitude and SR Ca2+ content, decreased SR Ca2+-ATPase2 expression, and increased phospholamban and Na+/Ca2+-exchanger 1 protein expression. Mechanistically, the adverse effects of MD1 deletion on LV remodelling were related to hyperactivated CaMKII signalling and increased impairment of intracellular Ca2+ homeostasis, whereas the increased electrophysiological instability was partly attributed to exaggerated prolongation of cardiac repolarisation, decreased action potential duration alternans threshold, and increased diastolic SR Ca2+ leak. Therefore, our study on MD1 could provide new therapeutic strategies for preventing/treating heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.