Endophytic fungi are one of the most prolific sources of functional biomolecules with therapeutic potential. Besides playing an important role in serious plant diseases, Fusarium strains possess the powerful capability to produce a diverse array of bioactive secondary metabolites (SMs). In order to in-depth mine gene clusters for SM biosynthesis of the genus Fusarium, an endophytic strain Fusarium sp. R1 isolated from Rumex madaio Makino was extensively investigated by whole-genome sequencing and in-depth bioinformatic analysis, as well as antiSMASH annotation. The results displayed that strain R1 harbors a total of 51.8 Mb genome, which consists of 542 contigs with an N50 scaffold length of 3.21 Mb and 50.4% GC content. Meanwhile, 19,333 functional protein-coding genes, 338 tRNA and 111 rRNA were comprehensively predicted and highly annotated using various BLAST databases including non-redundant (Nr) protein sequence, nucleotide (Nt) sequence, Swiss-Prot, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG), as well as Pathogen Host Interactions (PHI) and Carbohydrate-Active enzymes (CAZy) databases. Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) results showed that strain R1 has 37 SM biosynthetic gene clusters (BGCs), including 17 nonribosomal peptide synthetases (NRPSs), 13 polyketide synthetases (PKSs), 3 terpene synthases (Ts), 3 hybrid NRPS + PKS and 1 hybrid indole + NRPS. These findings improve our knowledge of the molecular biology of the genus Fusarium and would promote the discovery of new bioactive SMs from strain R1 using gene mining strategies including gene knockout and heteroexpression.
Aspergillus niger is one of the most important sources of secondary metabolites (SMs), with a wide array of pharmacological effects, including anti-inflammatory, antitumor, immunomodulatory and antioxidant effects. However, the biosynthetic analysis of these bioactive components has been rarely reported owing to the lack of high-quality genome sequences and comprehensive analysis. In this study, the whole genome of one marine-sponge-derived strain A. niger L14 was sequenced and assembled as well as in-depth bioinformatic analysis. The results indicated that the sequence assembly of strain L14 generated one high-quality genome with a total size of 36.1 Mb, a G + C content of 45.3% and an N50 scaffold of 4.2 Mb. Gene annotation was extensively deployed using various BLAST databases, including non-redudant (Nr) protein sequence, nucleotide (Nt) sequence, Swiss-Prot, Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) as well as Pathogen Host Interactions (PHI) and Carbohydrate-active enzymes (CAZy) databases. AntiSMASH analysis revealed that this marine strain harbors a total of 69 SMs biosynthesis gene clusters (BGCs), including 17 PKSs, 18 NRPSs, 21 NRPS-likes, 9 terpenes, 2 indoles, 1 betalactone and 1 siderophore, suggesting its biosynthetic potential to produce a wide variety of SMs. These findings will assist in future investigations on the genetic basis of strain L14 and provide insights into its new bioactive SMs for new drug discovery.
Chrysomycin A is one of the most promising therapeutic candidates for treating infections caused by multidrug-resistant Gram-positive bacteria. By hybridizing next-step generation (Illumina) and third-generation (PacBio) sequencing technologies, a high-quality chromosome-level genome together with a plasmid was firstly assembled for chrysomycin A-producing marine strain 891. Phylogenetic analysis of the 16S rRNA gene and genome sequences revealed that this strain unambiguously belonged to the genus Streptomyces, and its genomic features and functional genes were comprehensively analyzed and annotated. AntiSMASH analysis of this strain unveiled one key biosynthetic gene cluster, T2PKS, responsible for the biosynthesis of chrysomycin, the biosynthesis pathway of which was putatively proposed. These findings definitely shed light on further investigation for construction of a robust industrial strain with high-yield chrysomycin A production using genetic engineering techniques and combinatorial biology approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.