Summary
This paper develops a filtered high‐gain output feedback controller for a class of nonlinear systems in the presence of unknown state‐dependent and time‐varying nonlinearities. It considers that the nonlinearities satisfy a semiglobal Lipschitz condition. The presence of high‐gain observer in the adaptive law delivers a good property of disturbance rejection at the cost of peaking phenomenon as well as reduced robustness. The addition of filtering mechanism in the control law overcomes the cons of high‐gain observer and makes it robust to uncertainties in modeling the nonlinear functions. In this way, the filtered high‐gain output feedback controller realizes nonlinear time‐varying uncertainty cancelation and good tracking delivering with guaranteed robustness. The simulation results demonstrate the high efficiency of our novel design for handling of a class of nonlinear systems in the presence of time‐varying uncertainty when compared with saturated control signal.
This paper presents a novel attitude control design, which combines scriptL1 adaptive control and backstepping control together, for Autonomous Underwater Vehicles (AUVs) in a highly dynamic and uncertain environment. The Euler angle representation is adopted in this paper to represent the attitude propagation. Kinematics and dynamics of the attitude are in the strict feedback form, which leads the backstepping control strategy serving as the baseline controller. Moreover, by bringing fast and robust adaptation into the backstepping control architecture, our controller is capable of dealing with time-varying uncertainties from modeling and external disturbances in dynamics. This attitude controller is proposed for coupled pitch-yaw channels. For inevitable roll excursions, a Lyapunov function-based optimum linearization method is presented to analyze the stability of the roll angle in the operation region. Theoretical analysis and simulation results are given to demonstrate the feasibility of the developed control strategy.
Copy number variation (CNV) is a class of key biomarkers in many complex traits and diseases. Detecting CNV from sequencing data is a substantial bioinformatics problem and a standard requirement in clinical practice. Although many proposed CNV detection approaches exist, the core statistical model at their foundation is weakened by two critical computational issues: (i) identifying the optimal setting on the sliding window and (ii) correcting for bias and noise. We designed a statistical process model to overcome these limitations by calculating regional read depths via an exponentially weighted moving average strategy. A one-run detection of CNVs of various lengths is then achieved by a dynamic sliding window, whose size is self-adopted according to the weighted averages. We also designed a novel bias/noise reduction model, accompanied by the moving average, which can handle complicated patterns and extend training data. This model, called PEcnv, accurately detects CNVs ranging from kb-scale to chromosome-arm level. The model performance was validated with simulation samples and real samples. Comparative analysis showed that PEcnv outperforms current popular approaches. Notably, PEcnv provided considerable advantages in detecting small CNVs (1 kb–1 Mb) in panel sequencing data. Thus, PEcnv fills the gap left by existing methods focusing on large CNVs. PEcnv may have broad applications in clinical testing where panel sequencing is the dominant strategy. Availability and implementation: Source code is freely available at https://github.com/Sherwin-xjtu/PEcnv
Open chromatin regions are the genomic regions associated with basic cellular physiological activities, while chromatin accessibility is reported to affect gene expressions and functions. A basic computational problem is to efficiently estimate open chromatin regions, which could facilitate both genomic and epigenetic studies. Currently, ATAC-seq and cfDNA-seq (plasma cell-free DNA sequencing) are two popular strategies to detect OCRs. As cfDNA-seq can obtain more biomarkers in one round of sequencing, it is considered more effective and convenient. However, in processing cfDNA-seq data, due to the dynamically variable chromatin accessibility, it is quite difficult to obtain the training data with pure OCRs or non-OCRs, and leads to a noise problem for either feature-based approaches or learning-based approaches. In this paper, we propose a learning-based OCR estimation approach with a noise-tolerance design. The proposed approach, named OCRFinder, incorporates the ideas of ensemble learning framework and semi-supervised strategy to avoid potential overfitting of noisy labels, which are the false positives on OCRs and non-OCRs. Compared to different noise control strategies and state-of-the-art approaches, OCRFinder achieved higher accuracies and sensitivities in the experiments. In addition, OCRFinder also has an excellent performance in ATAC-seq or DNase-seq comparison experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.