Esophageal squamous-cell carcinoma (ESCC), one of the most prevalent and lethal malignant disease, has a complex but unknown tumor ecosystem. Here, we investigate the composition of ESCC tumors based on 208,659 single-cell transcriptomes derived from 60 individuals. We identify 8 common expression programs from malignant epithelial cells and discover 42 cell types, including 26 immune cell and 16 nonimmune stromal cell subtypes in the tumor microenvironment (TME), and analyse the interactions between cancer cells and other cells and the interactions among different cell types in the TME. Moreover, we link the cancer cell transcriptomes to the somatic mutations and identify several markers significantly associated with patients’ survival, which may be relevant to precision care of ESCC patients. These results reveal the immunosuppressive status in the ESCC TME and further our understanding of ESCC.
ObjectiveTo explore meibomian gland dysfunction (MGD) may determine the severity of dry eye conditions in visual display terminal (VDT) workers.MethodologyProspective, case-control study carried out in China.106 eyes of 53 patients (VDT work time >4 hour per day) were recruited as the Long time VDT group; 80 eyes of 40 control subjects (VDT work time ≤4 hour per day) served as the Short time VDT group. A questionnaire of Ocular Surface Disease Index (OSDI) and multiple tests were performed. Three dry eye tests: tear film breakup time (BUT), corneal fluorescein staining, Schirmer I test; and three MGD parameters: lid margin abnormality score, meibum expression assessment (meibum score), and meibomian gland dropout degree (meiboscore) using Keratograph 5 M.Principal FindingsOSDI and corneal fluorescein score were significantly higher while BUT was dramatically shorter in the long time VDT group than the short time VDT group. However, the average of Schirmer tear volumes was in normal ranges in both groups. Interestingly, the three MGD parameters were significantly higher in the long time VDT group than the short time one (P<0.0001). When 52 eyes with Schirmer <10 mm and 54 eyes with Schirmer ≥10 mm were separated from the long time VDT workers, no significant differences were found between the two subgroups in OSDI, fluorescein staining and BUT, as well as the three MGD parameters. All three MGD parameters were positively correlated with VDT working time (P<0.0001) and fluorescein scores (P<0.0001), inversely correlated with BUT (P<0.05), but not correlated with Schirmer tear volumes in the VDT workers.ConclusionsOur findings suggest that a malfunction of meibomian glands is associated with dry eye patients in long term VDT workers with higher OSDI scores whereas some of those patients presenting a normal tear volume.
Arabinogalactan proteins (AGPs) are a family of extracellular glycoproteins implicated in plant growth and development. With a rapid growth in the number of genomes sequenced in many plant species, the family members of AGPs can now be predicted to facilitate functional investigation. Building upon previous advances in identifying Arabidopsis AGPs, an integrated strategy of systematical AGP screening for “classical” and “chimeric” family members is proposed in this study. A Python script named Finding-AGP is compiled to find AGP-like sequences and filter AGP candidates under the given thresholds. The primary screening of classical AGPs, Lys-rich classical AGPs, AGP-extensin hybrids, and non-classical AGPs was performed using the existence of signal peptides as a necessary requirement, and BLAST searches were conducted mainly for fasciclin-like, phytocyanin-like and xylogen-like AGPs. Then glycomodule index and partial PAST (Pro, Ala, Ser, and Thr) percentage are adopted to identify AGP candidates. The integrated strategy successfully discovered AGP gene families in 47 plant species and the main results are summarized as follows: (i) AGPs are abundant in angiosperms and many “ancient” AGPs with Ser-Pro repeats are found in Chlamydomonas reinhardtii; (ii) Classical AGPs, AG-peptides, and Lys-rich classical AGPs first emerged in Physcomitrella patens, Selaginella moellendorffii, and Picea abies, respectively; (iii) Nine subfamilies of chimeric AGPs are introduced as newly identified chimeric subfamilies similar to fasciclin-like, phytocyanin-like, and xylogen-like AGPs; (iv) The length and amino acid composition of Lys-rich domains are largely variable, indicating an insertion/deletion model during evolution. Our findings provide not only a powerful means to identify AGP gene families but also probable explanations of AGPs in maintaining the plant cell wall and transducing extracellular signals into the cytoplasm.
Reactive oxygen species-induced vessel endothelium injury is crucial in cardiovascular diseases progression. Rice-derived bran bioactive peptides (RBAP) might exert antioxidant effect through unknown mechanisms. Herein, we validated the antioxidant effect and mechanism of RBAP on HO-induced oxidative injury in human umbilical vein endothelial cells (HUVECs). Here, HUVECs were treated with RBAP under HO stimulation; the effects of RBAP on HUVECs oxidative injury were evaluated. HO injury-induced cell morphology changes were ameliorated by RBAP. The effect of HO- on HUVEC apoptosis (percentage of apoptotic cell: 38.00 ± 2.00 in HO group vs 21.07 ± 2.06 in RBAP + HO group, P = 0.0013 compared to HO group), the protein levels of cleaved caspase-3 (relative protein expression: 2.90 ± 0.10 in HO group vs 1.82 ± 0.09 in RBAP + HO group, P < 0.0001 compared to HO group) and p-p65 (relative protein expression: 1.86 ± 0.09 in HO group vs 1.35 ± 0.08 in RBAP + HO group, P < 0.0001 compared to HO group) could be attenuated by RBAP. RBAP exerts its protective function through binding with Toll-like receptor 4 (TLR4). Taken together, RBAP protects HUVECs against HO-induced oxidant injury, which provided the theoretical basis for the molecular mechanism of rice deep processing and exploitation of functional peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.