Stimulator of IFN genes (STING) is an adaptor that functions downstream of retinoic acid–inducible gene I (RIG-I) in mammalian cells; however, RIG-I is absent in chickens. We identified chicken STING (chSTING) as a critical mediator of virus-triggered type I IFN signaling in RIG-I–null chicken cells. Overexpression of chSTING in DF-1 cells inhibited Newcastle disease virus and avian influenza virus (AIV) viral replication and activated IRF-7 and NF-κB to induce expression of type I IFNs. Knockdown of endogenous chSTING abolished virus-triggered activation of IRF-7 and IFN-β and increased viral yield. chSTING was a critical component in the virus-triggered IRF-7 activation pathway and the cellular antiviral response. chSTING predominantly localized to the outer membrane of the endoplasmic reticulum and was also found in the mitochondrial membrane. Furthermore, knockdown of chSTING blocked polyinosinic-polycytidylic acid–, poly(deoxyadenylic-deoxythymidylic) acid–, and melanoma differentiation–associated gene 5 (MDA5)-stimulated induction of IFN-β. Coimmunoprecipitation experiments indicated that chicken MDA5 could interact with chSTING, and this interaction was enhanced by ectopically expressed chicken mitochondrial antiviral-signaling protein. Together, these results indicated that chSTING is an important regulator of chicken innate immune signaling and might be involved in the MDA5 signaling pathway in chicken cells. These results help with understanding the biological role of STING in innate immunity during evolution.
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that causes serious diseases in pigs and humans. GdpP protein is a recently discovered specific phosphodiesterase that degrades cyclic diadenosine monophosphate (c-di-AMP). It is widely distributed among the firmicutes phylum and altered expression of GdpP is associated with several phenotypes in various bacterial strains. We investigated the role of GdpP in physiology and virulence in SS2. An in-frame mutant of gdpP was constructed using homologous recombination and bacterial growth, biofilm formation, hemolytic activity, cell adherence and invasion, expression of virulence factors, and virulence were evaluated. Disruption of gdpP increased intracellular c-di-AMP level and affected growth and increased biofilm formation of SS2. Simultaneously, the gdpP mutant strain exhibited a significant decrease in hemolytic activity and adherence to and invasion of HEp-2 cells compared with the parental strain. Quantitative reverse transcriptase polymerase chain reaction indicated significantly reduced expression of the known virulence genes cps2, sly, fpbs, mrp, ef and gdh in the gdpP mutant. In murine infection models, the gdpP mutant strain was attenuated, and impaired bacterial growth was observed in specific organs. All these findings revealed a significant contribution of gdpP and its substrate (c-di-AMP) to the biology and virulence of SS2.
IFN regulatory factor (IRF) 3 has been identified as the most critical regulator of both RNA and DNA virus–induced IFN production in mammals. However, ambiguity exists in research on chicken IRFs; in particular IRF3 seems to be missing in chickens, making IFN regulation in chickens unclear. In this study, we comprehensively investigated the potential IFN-related IRFs in chickens and showed that IRF7 is the most critical IFN-β regulator in chickens. With a chicken IRF7 (chIRF7) knockout DF-1 cell line, we conducted a series of experiments to demonstrate that chIRF7 is involved in both chicken STING (chSTING)- and chicken MAVS (chMAVS)-mediated IFN-β regulation in response to DNA and RNA viral infections, respectively. We further examined the mechanisms of chIRF7 activation by chSTING. We found that chicken TBK1 (chTBK1) is indispensable for chIRF7 activation by chSTING as well as that chSTING interacts with both chIRF7 and chTBK1 to function as a scaffold in chIRF7 activation by chTBK1. More interestingly, we discovered that chSTING mediates the activation of chIRF7 through a conserved SLQxSyS motif. In short, we confirmed that although IRF3 is missing in chickens, they employ IRF7 to reconstitute corresponding IFN signaling to respond to both DNA and RNA viral infections. Additionally, we uncovered a mechanism of chIRF7 activation by chSTING. The results will enrich and deepen our understanding of the regulatory mechanisms of the chicken IFN system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.