Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cells for space applications were grown on 4 inch Ge substrates by metal organic chemical vapor deposition methods. The triple-junction solar cells were obtained by optimizing the subcell structure, showing a high open-circuit voltage of 2.77 V and a high conversion efficiency of 31% with 30.15 cm2 area under the AM0 spectrum at 25 °C. In addition, the In0.01Ga0.99As middle subcell structure was focused by optimizing in order to improve the anti radiation ability of triple-junction solar cells, and the remaining factor of conversion efficiency for middle subcell structure was enhanced from 84% to 92%. Finally, the remaining factor of external quantum efficiency for triple-junction solar cells was increased from 80% to 85.5%.
The thermoelectric cooler (TEC) is a kind of cooling equipment which used to dissipate heat from the devices by Peltier effect. The cooling capacity (Qc) and coefficient of performance (COP) are both significant performance parameters of a thermoelectric cooler. In this article, three-dimensional numerical simulations are carried out by finite element analysis based on the temperature-dependent materials properties. The experimental and geometrical parameters have important effects on the TEC performance which have been analysed, such as electrical current, geometric configuration of thermoelectric leg, Thomson effect, thermal contact resistances and electrical contact resistances. The results show when the Thomson effect is ignored, the maximum difference in the cooling capacity is 7.638 W while the maximum difference in the COP is 0.09. When contact effect is not considered, the maximum difference in the cooling capacity is 22.06 W while the maximum difference in the COP is 0.75. Furthermore, the cooling capacity and COP have also been simultaneously optimized according to the multi-objective genetic algorithm. The best optimal value is obtained making use of TOPSIS (technique for order preference by similarity to an ideal solution) method from Pareto frontier. Investigated on these optimal design parameters which were anticipated to provide real guidance in industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.