Existing fractured gas reservoir development techniques are mainly based on dual medium numerical-simulation models, which can, to a certain extent, effectively simulate natural fractures with high fracture density; however, these models have some limitations, particularly in terms of simulating the fracture morphology and distribution. Considering carbonate gas reservoirs with complex fractures, in this paper, we establish a numerical-simulation model of embedded discrete-fracture seepage in horizontal wells of carbonate gas reservoirs, in order to compare and study the development effect of carbonate gas reservoirs under different horizontal well fracture parameters. The fracture distribution and structure in carbonate gas reservoirs is obtained using an ant-tracking approach based on 3D seismic bodies, and a numerical-simulation model based on the embedded discrete-fractures model is solved using the open-source program MRST. We considered the following parameters: half fracture length, fracture permeability, and horizontal segment length. By changing the fracture parameters of horizontal wells and comparing the gas-production trends, technical optimization in gas reservoir development can be realized. The results show that the embedded discrete-fracture model can effectively solve the difficult problem of characterizing fluid seepage in fractures of different scale in carbonate gas reservoirs. Although gas production increases with increasing fracture length, fracture conductivity, horizontal section length, and natural fracture conductivity, the contributions of these parameters to gas well production capacity are greatly influenced by the natural fractures.
The continuous gas displacement in unconsolidated sandstone gas reservoirs will necessarily result in the pore structure and rock permeability variations, which cannot be neglected in the gas development process. However, the variations have not been comprehensively addressed yet, especially for the rock structure in pore scale. This work presented the quantitative results of pore structure in microscale and permeability variations during gas displacement in unconsolidated sandstone reservoirs through computed tomography (CT) reconstruction analysis. The results indicated that a more than 3% increase in porosity after gas displacement resulted from the enlargement of the pore and throat with a diameter of more than 20 μm and 3 μm, respectively, owing to the release and migration of clay and fine particles, in spite of the distribution frequency decline of both pore and throat with a small diameter. The pore connectivity would be enhanced by the increase of the connected pores as well as the enlargement of the pore and throat sizes. However, the pore-throat coordination number could only change with slight improvement. In terms of permeability and relative permeability changes with pore structure, the improvement of permeability after gas displacement was higher than that of porosity, and the continuous gas displacement would broaden gas-water flow region and lower irreducible water saturation and residual gas saturation, and then, the equal phase relative permeability point would shift to the right. These investigations will contribute to more accurate reserve evaluation and productivity prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.