Retinal membrane peeling requires delicate manipulation. The presence of the surgeon's physiological tremor, the high variability and often low quality of the ophthalmic image, and excessive forces make the tasks more challenging. Preventing unintended movement caused by tremor and unintentional forces can reduce membrane injury. With the use of an actively stabilized handheld robot, we employ a monocular camera-based surface reconstruction method to estimate the retinal plane and we propose the use of a virtual fixture with application of hard and soft stops and motion scaling to improve control of the tool tip during delaminating in a laboratory simulation of retinal membrane peeling. A hard stop just below the membrane surface helps to limit downward force exerted on the surface. Motion scaling also improves the user's control of contact force when delaminating. We demonstrate a reduction of maximum force and maximum surface-penetration distance from the estimated retinal plane using the proposed technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.