Metal particle could deposited on Nylon 12 (PA12) surface using electroless plating with excellent interface and distribution, but the use of noble metal as catalytic site would increase the process cost and restrict its application. In this work, we employed a facile technology combined with acetic acid etching and electroless copper plating to prepare Cu/PA12 composite powder, and it used as conductive filler for antistatic coating was also studied. Results manifested defects (hole and amorphous structure) and amide group established on etched PA12 surface, which would facilitate the destruction of the [Cu-EDTA] structure, and then the reduction of REDOX barrier. As a result, Cu and Cu2O particles deposited on its surface. The downward trend of volume resistivity of antistatic coating appeared the rule of slow-fast-slow. The lowest volume resistivity was about 105 ohm�cm. This means that the dependable technology has great potential application in preparing metal/polymer composite material at a low cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.