© 2020, The Author(s), under exclusive licence to Springer Nature Limited. The use of nitrogen fertilizers has been estimated to have supported 27% of the world's population over the past century. Urea (CO(NH2)2) is conventionally synthesized through two consecutive industrial processes, N2 + H2 → NH3 followed by NH3 + CO2 → urea. Both reactions operate under harsh conditions and consume more than 2% of the world's energy. Urea synthesis consumes approximately 80% of the NH3 produced globally. Here we directly coupled N2 and CO2 in H2O to produce urea under ambient conditions. The process was carried out using an electrocatalyst consisting of PdCu alloy nanoparticles on TiO2 nanosheets. This coupling reaction occurs through the formation of C-N bonds via the thermodynamically spontaneous reaction between *N=N* and CO. Products were identified and quantified using isotope labelling and the mechanism investigated using isotope-labelled operando synchrotron-radiation Fourier transform infrared spectroscopy. A high rate of urea formation of 3.36 mmol g-1 h-1 and corresponding Faradic efficiency of 8.92% were measured at-0.4 V versus reversible hydrogen electrode.
The exact role of a defect structure on transition metal compounds for electrocatalytic oxygen evolution reaction (OER), which is a very dynamic process, remains unclear. Studying the structure–activity relationship of defective electrocatalysts under operando conditions is crucial for understanding their intrinsic reaction mechanism and dynamic behavior of defect sites. Co3O4 with rich oxygen vacancy (VO) has been reported to efficiently catalyze OER. Herein, we constructed pure spinel Co3O4 and VO-rich Co3O4 as catalyst models to study the defect mechanism and investigate the dynamic behavior of defect sites during the electrocatalytic OER process by various operando characterizations. Operando electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) implied that the VO could facilitate the pre-oxidation of the low-valence Co (Co2+, part of which was induced by the VO to balance the charge) at a relatively lower applied potential. This observation confirmed that the VO could initialize the surface reconstruction of VO–Co3O4 prior to the occurrence of the OER process. The quasi-operando X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption fine structure (XAFS) results further demonstrated the oxygen vacancies were filled with OH• first for VO–Co3O4 and facilitated pre-oxidation of low-valence Co and promoted reconstruction/deprotonation of intermediate Co–OOH•. This work provides insight into the defect mechanism in Co3O4 for OER in a dynamic way by observing the surface dynamic evolution process of defective electrocatalysts and identifying the real active sites during the electrocatalysis process. The current finding would motivate the community to focus more on the dynamic behavior of defect electrocatalysts.
The reasonable design of electrode materials for rechargeable batteries plays an important role in promoting the development of renewable energy technology. With the in‐depth understanding of the mechanisms underlying electrode reactions and the rapid development of advanced technology, the performance of batteries has significantly been optimized through the introduction of defect engineering on electrode materials. A large number of coordination unsaturated sites can be exposed by defect construction in electrode materials, which play a crucial role in electrochemical reactions. Herein, recent advances regarding defect engineering in electrode materials for rechargeable batteries are systematically summarized, with a special focus on the application of metal‐ion batteries, lithium–sulfur batteries, and metal–air batteries. The defects can not only effectively promote ion diffusion and charge transfer but also provide more storage/adsorption/active sites for guest ions and intermediate species, thus improving the performance of batteries. Moreover, the existing challenges and future development prospects are forecast, and the electrode materials are further optimized through defect engineering to promote the development of the battery industry.
An earth-abundant and highly efficient electrocatalyst is essential for oxygen evolution reaction (OER) due to its poor kinetics. Layered double hydroxide (LDH)-based nanomaterials are considered as promising electrocatalysts for OER. However, the stacking structure of LDHs limits the exposure of the active sites. Therefore, the exfoliation is necessary to expose more active sites. In addition, the defect engineering is proved to be an efficient strategy to enhance the performance of OER electrocatalysts. For the first time, this study prepares ultrathin CoFe LDHs nanosheets with multivacancies as OER electrocatalysts by water-plasma-enabled exfoliation. The water plasma can destroy the electrostatic interactions between the host metal layers and the interlayer cations, resulting in the fast exfoliation. On the other hand, the etching effect of plasma can simultaneously and effectively produce multivacancies in the as-exfoliated ultrathin LDHs nanosheets. The increased active sites and the multivacancies significantly contribute to the enhanced electrocatalytic activity for OER. Compared to pristine CoFe LDHs, the as-exfoliated ultrathin CoFe LDHs nanosheets exhibit excellent catalytic activity for OER with a ultralow overpotential of only 232 mV at 10 mA cm and possesses outstanding kinetics (the Tafel slope of 36 mV dec ). This work provides a novel strategy to exfoliate LDHs and to produce multivacancies simultaneously as highly efficient electrocatalysts for OER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.