In recent years, flexible pressure sensors have caused widespread concern for their extensive applications in human activity and health monitoring, robotics and prosthesis, as well as human-machine interface. Flexible pressure sensors in these applications are required to have a high sensitivity, large detective limit, linear response, fast response time, and mechanical stability. The mechanisms of capacitive, piezoresistive, and piezoelectric pressure sensors and the strategies to improve their performance are introduced. Sensing layers with microstructures have shown capability to significantly improve the performances of pressure sensors. Various fabrication methods for these structures are reviewed in terms of their pros and cons. Besides, the interference caused by environmental stimuli and internal stress from different directions leads to the infidelity of the signal transmission. Therefore, the anti-interference ability of flexible pressure sensors is highly desired. Several potential applications for flexible pressure sensors are also briefly discussed. Last, we conclude the future challenges for facilely fabricating flexible pressure sensors with high performance and anti-interference ability.
Ferroelectrets (also called piezoelectrets) are relatively young members in the family of piezo‐, pyro‐ and ferroelectric materials. They exhibit ferroic behaviour phenomenologically undistinguishable from that of traditional ferroelectrics, although the materials per se are essentially non‐polar space‐charge electrets with artificial macroscopic dipoles (i.e. internally charged cavities). Since ferroelectrets not only represent a scientific curiosity but also have great application potential, they have attracted tremendous attention from science and industry. The research and development of ferroelectrets has witnessed significant progress in the past few years. New ferroelectrets with large transverse piezoelectric activity, biodegradable ferroelectrets as well as 3‐D printed ferroelectrets are reported. Charging methods of high efficiency are proposed based on better understanding of the physico‐chemical processes during charging. New insights into the piezoelectricity of ferroelectrets are provided. The development of ferroelectret‐based piezoelectric‐magnetic multimodal transducer films opens up new avenues for the research of ferroelectrets. Particularly, more and more novel applications of ferroelectrets in flexible pressure sensors, health monitoring, energy harvesting, air‐coupled ultrasonic non‐destructive testing etc. are reported. Here, these exciting recent advancements in the field of ferroelectret research are reviewed and discussed.
Aluminum foam that is lightweight with high specific strength, high energy absorption and other characteristics can be used in aerospace, transportation, machinery manufacturing and other fields. The PCM method is usually used to prepare closed-cell aluminum foams. The microsized aluminum foams made by this process can solve the non-uniform pore structures caused by liquid drainage during the foaming process of large aluminum foams. The surface morphology and internal pore structure of microsized aluminum foams are affected by the quality of the precursor used for foaming. In this paper, foamable precursors were obtained via either hot rolling or hot extrusion and subsequently foamed. By analyzing the micromorphology and foaming process of the precursor, the influence of the technological method on the macroscopic pore structure of the final aluminum foam was studied. The results show that the aluminum powder particles in the precursor prepared with the hot rolling method had metallurgical bonding, and the outer surface was dense, with almost no porosity and holes in the interior. The microsized aluminum foam obtained after foaming was smooth in appearance, and the internal pore structure was round and uniform. The reason is that during the foaming process of microsize aluminum foam, the foaming agent was evenly distributed in the precursor of the hot rolling process because of its compact structure. During the foaming process, the decomposed gas of the foaming agent will not escape, and the evenly distributed foaming agent tends to nucleate in situ. In the process of rapid foaming, the pressure in the bubble is enough to resist the liquid drainage phenomenon caused by gravity, and the growth direction of the gas core is isotropic, which promotes the foam structure to be more rounded and uniform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.