A coplanar waveguide- (CPW-) fed dual-band multiple-input multiple-output (MIMO) antenna for 2.45/5.5 GHz wireless local area network (WLAN) applications is presented in this paper. The presented MIMO antenna consists of two identical trapezoidal radiating elements which are perpendicular to each other. The size of the entire MIMO antenna is 50 × 50 × 1.59 mm3, which is printed on a FR4 substrate. The measured impedance bandwidth of the proposed antenna is 2.25–3.15 GHz and 4.89–5.95 GHz, which can cover IEEE 802.11 a/b/g frequency bands. A rectangular microstrip stub is introduced to achieve a good isolation which is less than −15 dB in both operation frequency bands. The measured peak gain is 5.59 dBi at 2.45 GHz and 5.63 dBi at 5.5 GHz. The measured antenna efficiency is 77.8% and 80.4% in the lower and higher frequency bands, respectively. The ECC values at the lower and higher frequencies are lower than 0.003 and 0.01, respectively.
This paper presents a low-profile dual-band antenna with directional radiation characteristics for wireless local area network (WLAN) applications. The proposed directional antenna is composed of a coupling microstrip line, two F-shaped strips, two rectangular strips, and a defected ground plane. The measured impedance bandwidth of the proposed antenna is 180 MHz (2.33–2.51 GHz) and 830 MHz (5.09–5.92 GHz), which can cover Institute of Electrical and Electronic Engineers (IEEE) 802.11 a/b/g frequency bands. The dual-band antenna exhibits a desirable directional radiation patterns in the vertical and horizontal planes with the peak gain of 6.55 dBi in the lower frequency band and 8.1 dBi in the higher frequency band. The measured antenna efficiency is 70% at 2.4 GHz and 84.5% at 5.5 GHz. The proposed dual-band WLAN station antenna is designed on a FR4 substrate with overall dimensions of 69 mm × 50 mm × 1.6 mm.
This paper proposes that a radio frequency power amplifier is suitable for a 5G millimeter wave. It adopts a three-stage single-ended structure at 28GHz. An analog predistortion linearization method is used to improve the linearity of the power amplifier (PA). As a result, there is a significant improvement in power-added efficiency (PAE) and linearity is achieved. The Ka-band PA is implemented in TSMC 65nm CMOS process. At 1.2V supply voltage, the PA proposed in this paper achieves a saturated output power of 15.9dBm and a PAE of 16%. After linearization, the output power at the 1dB compression point is increased by 2dBm, with efficient gain compensation performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.