Railway turnout system is a key infrastructure to railway safety and efficiency. However, it is prone to failure in the field. Therefore, many railway departments have adopted a monitoring system to monitor the operation status of turnouts. With monitoring data collected, many researchers have proposed different fault-diagnosis methods. However, many of the existing methods cannot realize real-time updating or deal with new fault types. This paper—based on imbalanced data—proposes a Bayes-based online turnout fault-diagnosis method, which realizes incremental learning and scalable fault recognition. First, the basic conceptions of the turnout system are introduced. Next, the feature extraction and processing of the imbalanced monitoring data are introduced. Then, an online diagnosis method based on Bayesian incremental learning and scalable fault recognition is proposed, followed by the experiment with filed data from Guangzhou Railway. The results show that the scalable fault-recognition method can reach an accuracy of 99.11%, and the training time of the Bayesian incremental learning model reduces 29.97% without decreasing the accuracy, which demonstrates the high accuracy, adaptability and efficiency of the proposed model, of great significance for labor-saving, timely maintenance and further, safety and efficiency of railway transportation.
Purpose When a railway emergency occurs, it often leads to unexpected consequences, especially for trains of higher speed and larger passenger flow. Therefore, the railway emergency plan, a pre-established plan to deal with emergencies, plays an important role in reducing injuries and losses. However, the existing railway emergency plans remain as plain-text documents, requiring lots of manual work to capture the important regulations. This paper aims to propose a visualized, formal and digital railway emergency plan modeling method based on hierarchical timed Petri net (HTPN), which is also of better interpretability. Design/methodology/approach First, the general railway emergency plan was analyzed. Second, the HTPN-based framework model for the general railway emergency plan was proposed. Then, the instantiated model of electric multiple units rescue emergency plan was built by ExSpect, a Petri net simulation tool. Findings The experiments show that the proposed model is more digital and of better readability, visualization and performability, and, meanwhile, can generally conform to the practice well, offering a promising reference for future analysis of the optimization of railway emergency plans. Originality/value This study offers a promising reference for future analysis of the optimization of railway emergency plans.
Thermal imaging is an important technology in low-visibility environments, and due to the blurred edges and low contrast of infrared images, enhancement processing is of vital importance. However, to some extent, the existing enhancement algorithms based on pixel-level information ignore the salient feature of targets, the temperature which effectively separates the targets by their color. Therefore, based on the temperature and pixel features of infrared images, first, a threshold denoising model based on wavelet transformation with bilateral filtering (WTBF) was proposed. Second, our group proposed a salient components enhancement method based on a multi-scale retinex algorithm combined with frequency-tuned salient region extraction (MSRFT). Third, the image contrast and noise distribution were improved by using salient features of orientation, color, and illuminance of night or snow targets. Finally, the accuracy of the bounding box of enhanced images was tested by the pre-trained and improved object detector. The results show that the improved method can reach an accuracy of 90% of snow targets, and the average precision of car and people categories improved in four low-visibility scenes, which demonstrates the high accuracy and adaptability of the proposed methods of great significance for target detection, trajectory tracking, and danger warning of automobile driving.
Media is everything, and everything is media, so media can not be found no time and nowhere. Those substances that can make people and people, people and things or things and things be connected are generalized media. In the animation design, there are many kinds of media, such as, glass, paper, walls, etc, and animation manifestation types are diverse. The medium of animation can be of any material, and its main function is to serve the animators1 imaginations, and animation media would be an exaggeration to the extreme that does not make the audience feel weird. Many Russian animations, such as Alexander Petrov's animation works created pioneering and experimental of the animation forms, and in Media pluralism Times, it has a profound impact on contemporary cartoons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.