The biogeochemical cycling of soil elements in ecosystems has changed under global changes, including nutrients essential for plant growth. The application of biochar can improve the utilization of soil nutrients by plants and change the stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) in plants and soil. However, the response of ecological stoichiometry in a moss crust-soil continuum to local plant biochar addition in a desert ecosystem has not been comprehensively explored. Here, we conducted a four-level Seriphidium terrae-albae biochar addition experiment (CK, 0 t ha−1; T1, 3.185 t ha−1; T2, 6.37 t ha−1; T3, 12.74 t ha−1) to elucidate the influence of biochar input on C: N: P stoichiometry in moss crusts (surface) and their underlying soil (subsurface). The results showed that biochar addition significantly affected the C, N, and P both of moss crusts and their underlying soil (p < 0.001). Biochar addition increased soil C, N, and P concentrations, and the soil N content showed a monthly trend in T3. The C, N, and P concentrations of moss crusts increased with the addition levels of biochar, and the moss crust P concentrations showed an overall increasing trend by the month. Moreover, the soil and moss crust C: P and N: P ratios both increased. There was a significant correlation between moss crust C, N, and P and soil C and N. Additionally, nitrate nitrogen (NO3−N), N: P, C: P, EC, pH, soil moisture content (SMC), and N have significant effects on the C, N, and P of moss crusts in turn. This study revealed the contribution of biochar to the nutrient cycle of desert system plants and their underlying soil from the perspective of stoichiometric characteristics, which is a supplement to the theory of plant soil nutrition in desert ecosystems.
Sewage and industrial waste discharges have been found to have a deleterious effect on plant growth and environmental safety through the accumulation of trace metal mercury (Hg) in soils. Although the effects of Hg on vascular plants have been reported in terms of enzyme activity, oxidative damage and physiology, few studies have been done on non-vascular plants. A simulation experiment including 7 Hg concentrations (0, 10, 20, 30, 40, 50, 75 µM) was conducted to investigate the influence of Hg stress on ultrastructure and physiological properties of biocrust moss Syntrichia. caninervis across 7 consecutive days. The results showed that the lowest lethal concentration of S. caninervis was 30 µM Hg. The mortality rate of the plants increased significantly with Hg concentrations. The ultrastructure did not change significantly at Hg concentration ≤ 20 µM, while exceeding which, cell walls began to separate, nuclei began to blur, and chloroplasts began to expand. The soluble sugars (SS), peroxidase (POD), and superoxide dismutase (SOD) activities increased initially and then decreased with the increase of concentration in the time gradient, with the largest values at 20 µM. The contents of malondialdehyde (MDA) and proline (Pro) increased with the increase of Hg concentration, both reached peak value at 50 µM. However, chlorophyll (Chl) contents continued to decrease along both the concentration and time gradients. Pearson correlation and principal component analysis showed that two principal components (PC1 and PC2) explained 73.9% of the variance in plant adaptation to Hg stress. SOD, POD, Chl, SS, and Pro all responded well to Hg in S. caninervis. Our study showed that Hg stress caused changes in ultrastructure and physiological metabolism of S. caninervis. 20 µM was the maximum concentration of Hg that biocrust moss S. caninervis can tolerate. S. caninervis mainly adopted two adaptation strategies related to exclusion and accumulation to reduce Hg stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.