PURPOSE. To identify potentially pathogenic variants (PPVs) in Chinese familial exudative vitreoretinopathy (FEVR) patients in FZD4, LRP5, NDP, TSPAN12, ZNF408, and KIF11 genes. METHODS. Blood samples were collected from probands and their parent(s). Genomic DNA was analyzed by next-generation sequencing, and the sequence of selected variants were validated by Sanger sequencing. The potential pathogenicity of a variant was evaluated by in silico analysis and by cosegregation of the variant with disease. Each proband was subjected to comprehensive retinal examinations, and the severity of FEVR was individually graded for each eye. Whenever possible, fundus fluorescein angiography was obtained and analyzed for parent(s) of each proband. Variation in mutation expressivity was analyzed. RESULTS. Three hundred eighty-nine consecutive FEVR patients from 389 families participated in this study. About 74% of the probands were children younger than 7 years old. One hundred one PPVs, 49 variants with unknown significance (VUS), were identified, including 73 novel PPVs and 38 novel VUS. One hundred ten probands carried PPV (28.3%), and 51 probands carried VUS (13.1%). PPVs in FZD4, LRP5, TSPAN12, NDP, ZNF408, and KIF11 were found in 8.48%, 9.00%, 5.91%, 4.63%, 0.77%, and 0.77% of the cohort, respectively. Probands carrying PPVs in NDP and KIF11 had more severe FEVR in general than those carrying PPVs in other genes. Overall, variants in LRP5 and FZD4 showed more significant variation in phenotype than variants in TSPAN12 and NDP genes. CONCLUSIONS. Our study expanded the spectrum of PPVs associated with FEVR.
KIF11 gene mutations cause a rare autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR). Recently, such mutations were also found to be associated with familial exudative vitreoretinopathy (FEVR). Here, we report 7 novel KIF11 mutations identified by targeted gene capture in a cohort of 142 probands with FEVR who were diagnosed in our clinic between March 2015 and November 2015. These mutations were: p.L171V, c.790-2A>C, p.Q525*, p.Q842*, p.S936*, p.L983fs and p.R1025G. Phenotypic analysis revealed that all of the affected probands had advanced FEVR (stage 4 or above). Three had microcephaly, and one had chorioretinopathy, which indicated a phenotypic overlap with MCLMR. Two mutations were also found in the families of the affected probands. One parent with a p.R1025G mutation had an avascular peripheral retina and abnormal looping vessels. However, one parent with p.L983fs had normal retina, which indicated incomplete penetration of the genotype. Our results further confirmed that KIF11 is causative of FEVR in an autosomal dominant manner. We also suggest the examination of MCLMR-like features, such as microcephaly, chorioretinopathy, for patients with FEVR and wide-field fundus photography for patients with MCLMR in future practice.
BackgroundCells respond to DNA damage by activating the phosphatidylinositol-3 kinase-related kinases, p53 and other pathways to promote cell cycle arrest, apoptosis, and/or DNA repair. Here we report that protein palmitoylation, a modification carried out by protein acyltransferases with zinc-finger and Asp-His-His-Cys domains (zDHHC), is required for proper DNA damage responses.ResultsInhibition of protein palmitoylation compromised DNA damage-induced activation of Atm, induction and activation of p53, cell cycle arrest at G2/M phase, and DNA damage foci assembly/disassembly in primary mouse embryonic fibroblasts. Furthermore, knockout of zDHHC16, a palmitoyltransferase gene identified as an interacting protein for c-Abl, a non-receptor tyrosine kinase involved in DNA damage response, reproduced most of the defects in DNA damage responses produced by the inhibition of protein palmitoylation.ConclusionsOur results revealed critical roles for protein palmitoylation and palmitoyltransferase zDHHC16 in early stages of DNA damage responses and in the regulation of Atm activation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12867-016-0065-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.