Targeting the Kv1.3 potassium channel has proven effective in reducing obesity and the severity of animal models of autoimmune disease. Stichodactyla toxin (ShK), isolated from the sea anemone Stichodactyla helianthus, is a potent blocker of Kv1.3. Several of its analogs are some of the most potent and selective blockers of this channel. However, like most biologics, ShK and its analogs require injections for their delivery, and repeated injections reduce patient compliance during the treatment of chronic diseases. We hypothesized that inducing the expression of an ShK analog by hepatocytes would remove the requirement for frequent injections and lead to a sustained level of Kv1.3 blocker in the circulation. To this goal, we tested the ability of Adeno-Associated Virus (AAV)8 vectors to target hepatocytes for expressing the ShK analog, ShK-235 (AAV-ShK-235) in rodents. We designed AAV8 vectors expressing the target transgene, ShK-235, or Enhanced Green fluorescent protein (EGFP). Transduction of mouse livers led to the production of sufficient levels of functional ShK-235 in the serum from AAV-ShK-235 single-injected mice to block Kv1.3 channels. However, AAV-ShK-235 therapy was not effective in reducing high-fat diet-induced obesity in mice. In addition, injection of even high doses of AAV8-ShK-235 to rats resulted in a very low liver transduction efficiency and failed to reduce inflammation in a well-established rat model of delayed-type hypersensitivity. In conclusion, the AAV8-based delivery of ShK-235 was highly effective in inducing the secretion of functional Kv1.3-blocking peptide in mouse, but not rat, hepatocytes yet did not reduce obesity in mice fed a high-fat diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.