Low-emissivity (low-e) glass has garnered considerable attention for implementation in energy-saving windows, which can effectively decrease the energy consumption of buildings. However, the traditional vacuum-coating technology of low-e films greatly enhances the cost of energy-saving windows, and the influence of the vacuum-coating parameters on the optical characteristics of low-e films necessitates a complex optimization process. Herein, we prepared Ag NWs with controllable diameters using the polyol method, and the alignment of the Ag NW film coating on glass substrates was regulated by the shear force of the liquid flow generated through magnetic stirring. After optimization, the low-εMIR windows based on aligned Ag NW (60 nm) coatings showed an optical transmittance of 84.4% and a low εMIR of 0.3, which were superior to those of commercial low-εMIR glass (T: 65.6%; εMIR: 0.4). The simplicity and low cost of aligned Ag NW coatings for low-e glass open up a new avenue for reducing energy consumption in existing windows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.