Nonconventional luminescence polymers without any aromatic structures have attracted great interest from researchers due to their special structure and excellent biocompatibility. However, these materials mostly emit in the blue or green region, in which preparation of materials with long-wavelength (especially near-infrared) emission is still a great challenge. In this work, it is found that 2-(dimethyl amino) ethyl methacrylate (DMA) and itaconic anhydride (ITA) undergo a ring-opening reaction at room temperature, and subsequently generate zwitterionic compound (IDMA). Based on the clustering-triggered emission (CTE) mechanism, ionic bond can effectively promote the isolated electron-rich chromophores to form new emissive clusters with extended electron delocalization. Herein, two oligomers (P1 and P2) with different fluorescence emissions by controlling the concentration of zwitterionic monomers before polymerization are synthesized. It is worth noting that the maximum emission wavelength of P2 at high concentration is up to 712 nm, which is very rare in previous reports. In addition, the resulting oligomer (P2) shows typical aggregation-enhanced emission (AEE), excitation-dependent fluorescence, temperature-sensitive emission, and solvatochromism. The cytotoxicity assay demonstrates that P2 was low toxic to Huh7 and LM3 cells, and suitable for cell imaging. This research provides the possibility for rational molecular design and the feasibility of luminescence regulation.
Chinese HZ boars are typical plateau miniature boars characterized by precocious puberty, which is closely related to testicular development and spermatogenesis. Accumulating evidence indicates that lncRNA is involved in the testicular development and regulation of spermatogenesis. However, little is known about the lncRNA precocious regulation in testicular development and spermatogenesis on early sexual maturity of HZ boars. Thus, we investigated the expression and characterization of lncRNA and mRNA in 30-day-old and 120-day-old HZ boar testes using transcriptome to explore precocious puberty. Landrace (LC) boar was treated as the control. Histological analyses indicated that HZ boar underwent puberty development at an earlier stage than LC boar and had achieved sexual maturity at 120 days old. RNA-Seq yielded a total of 187 lncRNAs and 984 mRNAs; these molecules were identified as possible candidates for precocious puberty. GO terms and KEGG pathways enrichment analyses revealed that the differentially expressed lncRNA and their targeted genes were involved in metabolic pathways regulating testis development and spermatogenesis, such as the PI3K-Akt, TGF-beta and Wnt pathways. Further screening, some lncRNA (such as LOC102166140, LOC110259451, and MSTRG.15011.2), and mRNA (such as PDCL2, HSD17B4, SHCBP1L, CYP21A2, and SPATA3) were found to be possibly associated with precocious puberty, which would add to our understanding of the molecular regulatory mechanisms of precocious puberty. This study provided valuable information for further study of the role of lncRNA and mRNA in the process of precocious puberty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.