Oceanic islands emerge lifeless from the seafloor and are separated from continents by long stretches of sea. Consequently, all their species had to overcome this stringent dispersal filter, making these islands ideal systems to study the biogeographic implications of long‐distance dispersal (LDD). It has long been established that the capacity of plants to reach new islands is determined by specific traits of their diaspores, historically called dispersal syndromes. However, recent work has questioned to what extent such dispersal‐related traits effectively influence plant distribution between islands. Here we evaluated whether plants bearing dispersal syndromes related to LDD – i.e. anemochorous (structures that favour wind dispersal), thalassochorous (sea dispersal), endozoochorous (internal animal dispersal) and epizoochorous (external animal dispersal) syndromes – occupy a greater number of islands than those with unspecialized diaspores by virtue of their increased dispersal ability. We focused on the native flora of the lowland xeric communities of the Canary Islands (531 species) and on the archipelago distribution of the species. We controlled for several key factors likely to affect the role of LDD syndromes in inter‐island colonization, namely: island geodynamic history, colonization time and phylogenetic relationships among species. Our results clearly show that species bearing LDD syndromes have a wider distribution than species with unspecialized diaspores. In particular, species with endozoochorous, epizoochorous and thalassochorous diaspore traits have significantly wider distributions across the Canary archipelago than species with unspecialized and anemochorous diaspores. All these findings offer strong support for a greater importance of LDD syndromes on shaping inter‐island plant distribution in the Canary Islands than in some other archipelagos, such as Galápagos and Azores.
After more than 180 million years of evolution, angiosperms have acquired multiple fruit and seed types. Oceanic islands offer an ideal framework to test the advantage of bearing multiple sets of diaspore traits by a single species using its geographic distribution. Contrast analyses between the floras of Europe (Portugal) and Azores revealed a meager advantage for species with two sets of diasporas vs one set or none. A general trend of a higher number of islands colonized by species with a single set and two sets than species with no traits related to long-distance dispersal (unspecialized) was found.
Most of our understanding of island diversity comes from the study of aboveground systems, while the patterns and processes of diversification and community assembly for belowground biotas remain poorly understood. Here, we take advantage of a relatively young and dynamic oceanic island to advance our understanding of ecoevolutionary processes driving community assembly within soil mesofauna. Using whole organism community DNA (wocDNA) metabarcoding and the recently developed metaMATE pipeline, we have generated spatially explicit and reliable haplotype‐level DNA sequence data for soil mesofaunal assemblages sampled across the four main habitats within the island of Tenerife. Community ecological and metaphylogeographic analyses have been performed at multiple levels of genetic similarity, from haplotypes to species and supraspecific groupings. Broadly consistent patterns of local‐scale species richness across different insular habitats have been found, whereas local insular richness is lower than in continental settings. Our results reveal an important role for niche conservatism as a driver of insular community assembly of soil mesofauna, with only limited evidence for habitat shifts promoting diversification. Furthermore, support is found for a fundamental role of habitat in the assembly of soil mesofauna, where habitat specialism is mainly due to colonization and the establishment of preadapted species. Hierarchical patterns of distance decay at the community level and metaphylogeographical analyses support a pattern of geographic structuring over limited spatial scales, from the level of haplotypes through to species and lineages, as expected for taxa with strong dispersal limitations. Our results demonstrate the potential for wocDNA metabarcoding to advance our understanding of biodiversity.
Soils harbour a rich arthropod fauna, but many species are still not formally described (Linnaean shortfall) and the distribution of those already described is poorly understood (Wallacean shortfall). Metabarcoding holds much promise to fill this gap, however, nuclear copies of mitochondrial genes, and other artefacts lead to taxonomic inflation, which compromise the reliability of biodiversity inventories.Here, we explore the potential of a bioinformatic approach to jointly "denoise" and filter nonauthentic mitochondrial sequences from metabarcode reads to obtain reliable soil beetle inventories and address open questions in soil biodiversity research, such as the scale of dispersal constraints in different soil layers. We sampled cloud forest arthropod communities from 49 sites in the Anaga peninsula of Tenerife (Canary Islands). We performed whole organism community DNA (wocDNA) metabarcoding, and built a local reference database with COI barcode sequences of 310 species of Coleoptera for filtering reads and the identification of metabarcoded species. This resulted in reliable haplotype data after considerably reducing nuclear mitochondrial copies and other artefacts. Comparing our results with previous beetle inventories, we found: (i) new species records, potentially representing undescribed species; (ii) new distribution records, and (iii) validated phylogeographic structure when compared with traditional sequencing approaches. Analyses also revealed evidence for higher dispersal constraint within deeper soil beetle communities, compared to those closer to the surface. The combined power of barcoding and metabarcoding contribute to mitigate the important shortfalls associated with soil arthropod diversity data, and thus address unresolved questions for this vast biodiversity fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.