With the increase of Internet of vehicles (IoVs) traffic, the contradiction between a large number of computing tasks and limited computing resources has become increasingly prominent. Although many existing studies have been proposed to solve this problem, their main consideration is to achieve different optimization goals in the case of edge offloading in static scenarios. Since realistic scenarios are complicated and generally time-varying, these studies in static scenes are imperfect. In this paper, we consider a collaborative computation offloading in a time-varying edge-cloud network, and we formulate an optimization problem with considering both delay constraints and resource constraints, aiming to minimize the long-term system cost. Since the set of feasible solutions to the problem is nonconvex, and the complexity of the problem is very large, we propose a Q-learning-based approach to solve the optimization problem. In addition, due to the dimensional catastrophes, we further propose a DQN-based approach to solve the optimization problem. Finally, by comparing our two proposed algorithms with typical algorithms, the simulation results show that our proposed approaches achieve better performance. Under the same conditions, by comparing our two proposed algorithms with typical algorithms, the simulation results show that our proposed Q-learning-based method reduces the system cost by about 49% and 42% compared to typical algorithms. And in the same case, compared with the classical two schemes, our proposed DQN-based scheme reduces the system cost by 62% and 57%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.