A new technological approach makes fabrication of relief computer-generated focusing elements for IR radiation by use of a dry photopolymer recording material possible. The formation of a relief structure by self-development takes place in the dark, subsequent to the holographic illumination, without wet processing. Consequently these diffractive elements exhibit low surface scattering. The formation of a surface wave of the monomer along the light-darkness boundary is observed for the first time to our knowledge and confirms the previously proposed thermodynamic model of the mechanism of the hologram formation in photopolymerizable layers. Dye-sensitized polymerization of acrylamide is found to produce nonlinearity of the relief recording. At least partial compensation of this nonlinearity is attained by the introduction of appropriate corrections into the computer-generated amplitude function. A diffraction efficiency of ~ 55% is obtained for CO(2) laser radiation (λ = 10.6 µm).
Cationic-induced two-photon photo-polymerization is demonstrated at 710 nm, using an isopropylthioxanthone / diarylidonium salt initiating system for the cationic polymerization of an epoxide. In-situ monitoring of the polymer conversion using interferometry allows for determination of the polymerization threshold J2th, polymerization rate R and its dependence of initiator's concentration z. Best J2th achieved is 1 GW/cm 2 , with a dynamic range of > 100, i.e. the material can be fully polymerized at intensities > 100 times the threshold level without damage. The R is found to be proportional to the m=1.7 power of the intensity, or R =[C(J-J2th)]m =[C(J-J2th)]1.7 , which implies a significantly stronger localization of the photochemical response than that of free radical photoinitiators. Both R and J2th significantly improve when the concentration z of the initiator (onium salt) increases, reduction of J2th exhibiting z -m trend.
We have developed an optical stack of holographically formed polymer dispersed liquid-crystal (H-PDLC) devices that is fully operational with nonpolarized light sources. The device consists of two H-PDLC transmission gratings separated by a passive polarization rotator that can output a diffracted s-polarized, p-polarized, or s- and p-polarized beam simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.