It is important but remains a challenge to develop solution-processed plasmonic solar thermoelectricity films on various substrates, without strictly considering hierarchical plasmonic-dielectric-metal structures, to harvest a wide range of visible to near-infrared sunlight. We simply fabricate plasmonic silica metastructure sunlight-collecting nanofilms on highly reflective Cu and Si surfaces by introducing spin coating (with an Ag and silica colloidal mixture, a spin coater, and a heating plate) and low-temperature annealing (in an oven at 200 °C for 1 h) processes. The approximately 250 nm thick metastructure consists of a top 60 nm thick silica layer as an antireflective film and a bottom 190 nm thick Ag nanoparticle-silica hybrid film as a sunlight harvester. The metastructure film reduces the reflectivity of Cu (>90%) and Si (25-35%) to less than 5% at visible to near-infrared frequencies. The metastructure film on the Cu sheet has an absorptance of 0.95 and a thermal emittance of 0.06, ideal for high-performance sunlight absorbers. The solar thermoelectric powers of the film-coated Cu and Si are 15.4 and 4.7 times those of the uncoated Cu and Si substrates, respectively. The metastructure film on Cu exhibited a similar or slightly higher performance than that of a top-class vapor-deposited commercialized absorber film on Cu, demonstrating the robustness of the present method.
Optimizing the colloidal state of polyamic acid (PAA) nanoparticles is essential for achieving a uniform and high-performance polyimide coating by electrophoretic deposition (EPD) on metal substrates of various shapes. In this paper, we report two important roles of the counterions in the formation of PAA colloids for EPD, which, to date, have not been recognized. First, when tertiary alkyl amines are used to neutralize PAA, the polarity of neutralizing counterions determines the size and stability of the PAA colloidal particles. The polarity can be finely tuned by using two different tertiary alkyl amines containing polar and nonpolar groups and adjusting the molar ratio. Depending on the polar/nonpolar ratio, various states of PAA colloids were obtained, including dissolved state, stable colloid, and aggregates. Second, we observed that the confined counterions inside PAA nanoparticles can act as an imidization catalyst during the thermal annealing process. It is revealed that some fraction of the counterion species, mostly having nonpolar groups, is not drawn toward the counter electrode and remains inside the PAA nanoparticles during the EPD process. Optimizing the polarity eventually allowed us to form uniform EPD coatings with high dielectric strengths.
Side effects from acute and chronic alcohol consumption are well known. Paradoxically, however, the possibility that a moderate intake of alcohol may have a positive impact on secondary language learning has long been reported, and is also a popular belief. Recently, it has been reported that alcohol consumption improves the pronunciation of foreign languages as well as the memory effect. However, there is no definitive report on the mechanism by which alcohol is involved in memory enhancement and language learning. This review aims to provide an understanding of these effects and provide a blueprint for futher research by neurologically describing the mechanisms and possibilities that alcohol may have on language learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.