The subject of this article is bialgebra factorizations or cross product bialgebras without cocycles. We establish a theory characterizing cross product bialgebras universally in terms of projections and injections. Especially all known types of biproduct, double cross product, and bicross product bialgebras can be described Ž . by this theory. Furthermore the theory provides new families of cocycle-free cross product bialgebras. Besides the universal characterization we find an equivalent Ž . co modular description of certain types of cross product bialgebras in terms of so-called Hopf data. With the help of Hopf data construction we recover again all known cross product bialgebras as well as new and more general types of cross product bialgebras. We are working in the general setting of braided monoidal categories, which allows us to apply our results in particular to the braided category of Hopf bimodules over a Hopf algebra. Majid's double biproduct is seen to be a twisting of a certain tensor product bialgebra in this category. This resembles the case of the Drinfel'd double which can be constructed as a twist of a specific cross product. ᮊ
Hopf (bi-)modules and crossed modules over a bialgebra B in a braided monoidal category C are considered. The (braided) monoidal equivalence of both categories is proved provided B is a Hopf algebra (with invertible antipode). Bialgebra projections and Hopf bimodule bialgebras over a Hopf algebra in C are found to be isomorphic categories. A generalization of the Majid-Radford criterion for a braided Hopf algebra to be a cross product is obtained as an application of these results.
Let H be a Hopf algebra in a rigid braided monoidal category with split idempotents. We prove the existence of integrals on (in) H characterized by the universal property, employing results about Hopf modules, and show that their common target (source) object Int H is invertible. The fully braided version of Radford's formula for the fourth power of the antipode is obtained. Connections of integration with cross-product and transmutation are studied.
This is the central article of a series of three papers on cross product bialgebras. We present a universal theory of bialgebra factorizations (or cross product bialgebras) with cocycles and dual cocycles. We also provide an equivalent (co-)modular (co-)cyclic formulation. All known examples as for instance bi-or smash, doublecross and bicross product bialgebras as well as double biproduct bialgebras and bicrossed or cocycle bicross product bialgebras are now united within a single theory. Furthermore our construction yields various novel types of cross product bialgebras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.