Background
Training volume is associated with direct and indirect pathways of bone adaptations. In addition, training volume is a training variable associated with lean soft tissue (LST), which has been shown to be an important predictor of areal bone mineral density (aBMD). Thus, the aim of this study is to investigate the influential role of lean soft tissue (LST) in the association between training volume and aBMD in male adolescent athletes.
Methods
This cross-sectional study was composed of 299 male adolescent athletes, mean age 14.1 (1.8) years, from 9 different weight-bearing modalities. The Ethical Board approved the investigation. The adolescents reported the number of days per week they trained and the time spent training and, from this, the training volume (h/wk) was estimated. The LST and aBMD were assessed by dual-energy x-ray absorptiometry. Somatic maturation was estimated by the peak of height velocity. Mediation analysis was performed to investigate the role of LST in the association between training volume and aBMD. Level of significance was set at p < 0.05.
Results
LST partially explained the association between training volume and aBMD in all body segments: upper limbs (58.37%; β = 0.00142), lower limbs (28.35%; β = 0.00156), spine (33.80%; β = 0.00124), and whole body (41.82%, β = 0.00131). There was no direct effect of training volume on aBMD in upper limbs (CI -0.00085 to 0.00287). Conclusion: The association between training volume and aBMD is influenced by LST in different body segments, mainly upper limbs, demonstrating that interventions aiming to enhance aBMD should also consider LST as an important variable to be managed.
Background
Skeletal age (SA) is considered the best method of assessing biological maturation. The aim of this study was to determine intra-observer (reproducibility) and inter-observer agreement of SA values obtained via the Greulich-Pyle (GP) method. In addition, the variation in calculated SAs by alternative GP protocols was examined.
Methods
The sample was composed of 100 Portuguese female soccer players aged 12.0–16.7 years. SAs were determined using the GP method by two observers (OB1: experience < 100 exams using GP; OB2: experience > 2000 exams using several methods). The radiographs were examined using alternative GP protocols: (wholeGP) the plate was matched to the atlas as an overall approach; (30-boneGP) bone-by-bone inspections of 30-bones; (GPpmb) bone-by-bone inspections of the pre-mature bones only. For the 30-boneGP and GPpmb approaches, SA was calculated via the mean (M) and the median (Md).
Results
Reproducibility ranged 82–100% and 88–100% for OB1 and OB2, respectively. Inter-observer agreement (100 participants multiplied by 30 bones) was 92.1%. For specific bones, agreement rates less than 90% were found for scaphoid (81%), medial phalange V (83%), trapezium (84%) and metacarpal V (87%). Differences in wholeGP SAs obtained by the two observers were moderate (d-cohen was 0.79). Mean differences between observers when using bone-by bone SAs were trivial (30-boneGP: d-cohen less than 0.05; GPpmb: d-cohen less than 0.10). The impact of using the mean or the median was negligible, particularly when analyses did not include bones scored as mature.
Conclusion
The GP appeared to be a reasonably reproducible method to assess SA and inter-observer agreement was acceptable. There is evidence to support a recommendation of only scoring pre-mature bones during later adolescence. Further research is required to examine whether these findings are consistent in younger girls and in boys.
BackgroundOsteoporosis is considered a public health problem with high worldwide prevalence. One approach to prevention is through the promotion of physical activity, especially exercise, during adolescence.MethodsThis study compared bone variables in different body segments in adolescents according to participation in track and field. The study included 34 adolescents (22 boys), of whom 17 were track and field athletes and 17 were control subjects. Bone mineral density (BMD, g/cm2) and bone mineral content (BMC, g) were analyzed using dual energy X-ray absorptiometry (total body stratified by body segments). Peak height velocity was used to estimate somatic maturation.ResultsAthletes had higher BMD (P=0.003) and BMC (P=0.011) values in the lower limbs and higher whole body BMD (P=0.025) than the control group. However, when adjusted for confounding factors, the difference was not maintained. The groups had similar lean soft tissue values (P=0.094). Training overload was positively correlated with BMD in the upper limbs (r=0.504; 95% confidence interval, 0.031-0.793). Although track and field athletes had higher BMD and BMC values in the lower limbs, these differences were not significant when adjusted for confounding factors.ConclusionsTrack and field participation in adolescence appears to influence BMD and BMC in lower limbs, and fat-free mass seems to mediate this effect. Also, higher training loads were found to be positive for bone health in upper limbs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.