This paper is the first in a two-part series analyzing human arm and hand motion during a wide range of unstructured tasks. The wide variety of motions performed by the human arm during daily tasks makes it desirable to find representative subsets to reduce the dimensionality of these movements for a variety of applications, including the design and control of robotic and prosthetic devices. This paper presents a novel method and the results of an extensive human subjects study to obtain representative arm joint angle trajectories that span naturalistic motions during Activities of Daily Living (ADLs). In particular, we seek to identify sets of useful motion trajectories of the upper limb that are functions of a single variable, allowing, for instance, an entire prosthetic or robotic arm to be controlled with a single input from a user, along with a means to select between motions for different tasks. Data driven approaches are used to discover clusters and representative motion averages for the wrist 3 degree of freedom (DOF), elbow-wrist 4 DOF, and full-arm 7 DOF motions. The proposed method makes use of well-known techniques such as dynamic time warping (DTW) to obtain a divergence measure between motion segments, Ward's distance criterion to build hierarchical trees, and functional principal component analysis (fPCA) to evaluate cluster variability. The emerging clusters associate various recorded motions into primarily hand start and end location for the full-arm system, motion direction for the wrist-only system, and an intermediate between the two qualities for the elbow-wrist system.
Despite great innovations in upper-extremity prosthetic hardware in recent decades, controlling a multiple joint upper limb prosthesis such as an elbow/wrist/hand system is still an open clinical challenge, in large part due to an insufficient number of control inputs available to users. While simultaneous control is in its early stages, the common control approach is sequential control, in which joints and grasps are driven one at a time. In this paper, we introduce and evaluate a concept we call trajectory control, that builds upon this approach, in which motions of the wrist, elbow, and shoulder DOFs (and subsets of them) are coupled into predefined sets of coordinated trajectories; to be selected by the user and driven with a single input variable. These trajectories were designed based on an earlier motion study of activities of daily life obtained from human demonstrations. We experimentally evaluate the efficacy of our approach through a human subjects study in which tasks are performed in a virtual environment. The results show that as device complexity increased (i.e. greater number of DOFs corresponding to more proximal amputations), participants were able to complete tasks faster with trajectory control while exhibiting similar levels of body compensation when compared to sequential and simultaneous control. Additionally, participants found trajectory control to be more intuitive and displayed more natural movement.
This paper is the second in a two-part series analyzing human arm and hand motion during a wide range of unstructured tasks. In this work, we track the hand of healthy individuals as they perform a variety of activities of daily living (ADLs) in three ways decoupled from hand orientation: end-point locations of the hand trajectory, whole path trajectories of the hand, and straight-line paths generated using start and end points of the hand. These data are examined by a clustering procedure to reduce the wide range of hand use to a smaller representative set. Hand orientations are subsequently analyzed for the end-point location clustering results and subsets of orientations are identified in three reference frames: global, torso, and forearm. Data driven methods that are used include dynamic time warping (DTW), DTW barycenter averaging (DBA), and agglomerative hierarchical clustering with Ward's linkage. Analysis of the endpoint locations, path trajectory, and straight-line path trajectory identified 5, 5, and 7 ADL task categories, respectively, while hand orientation analysis identified up to 4 subsets of orientations for each task location, discretized and classified to the facets of a rhombicuboctahedron. Together these provide insight into our hand usage in daily life and inform an implementation in prosthetic or robotic devices using sequential control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.