These results provide new pharmacological evidence for the effects of ZNS. ZNS markedly increased GSH levels by enhancing the astroglial cystine transport system and/or astroglial proliferation via S100beta production or secretion. ZNS acts as a neuroprotectant against oxidative stress and progressive dopaminergic neurodegeneration.
Our previous studies demonstrated the involvement of quinone formation in dopaminergic neuron dysfunction in the L-DOPA-treated parkinsonian model and in methamphetamine (METH) neurotoxicity. We further reported that the cysteine-rich metal-binding metallothionein (MT) family of proteins protects dopaminergic neurons against dopamine (DA) quinone neurotoxicity by its quinone-quenching property. The aim of this study was to examine MT induction in astrocytes in response to excess DA and the potential neuroprotective effects of astrocyte-derived MTs against DA quinone toxicity. DA exposure significantly upregulated MT-1/-2 in cultured striatal astrocytes, but not in mesencephalic neurons. This DA-induced MT upregulation in astrocytes was blocked by treatment with a DA-transporter (DAT) inhibitor, but not by DA-receptor antagonists. Expression of nuclear factor erythroid 2-related factor (Nrf2) and its binding activity to antioxidant response element of MT-1 gene were significantly increased in the astrocytes after DA exposure. Nuclear translocation of Nrf2 was suppressed by the DAT inhibitor. Quinone formation and reduction of mesencephalic DA neurons after DA exposure were ameliorated by preincubation with conditioned media from DA-treated astrocytes. These protective effects were abrogated by MT-1/-2-specific antibody. Adding exogenous MT-1 to glial conditioned media also showed similar neuroprotective effects. Furthermore, MT-1/-2 expression was markedly elevated specifically in reactive astrocytes in the striatum of L-DOPA-treated hemi-parkinsonian mice or METH-injected mice. These results suggested that excess DA taken up by astrocytes via DAT upregulates MT-1/-2 expression specifically in astrocytes, and that MTs or related molecules secreted specifically by astrocytes protect dopaminergic neurons from damage through quinone quenching and/or scavenging of free radicals.
Prostaglandin H synthase exerts not only cyclooxygenase activity but also peroxidase activity. The latter activity of the enzyme is thought to couple with oxidation of dopamine to dopamine quinone. Therefore, it has been proposed that cyclooxygenase inhibitors could suppress dopamine quinone formation. In the present study, we examined effects of various cyclooxygenase inhibitors against excess methyl L-3,4-dihydroxyphenylalanine (L-DOPA)-induced quinoprotein (protein-bound quinone) formation and neurotoxicity using dopaminergic CATH.a cells. The treatment with aspirin inhibited excess methyl L-DOPA-induced quinoprotein formation and cell death. However, acetaminophen did not show protective effects, and indomethacin and meloxicam rather aggravated these methyl L-DOPA-induced changes. Aspirin and indomethacin did not affect the level of glutathione that exerts quenching dopamine quinone in dopaminergic cells. In contrast with inhibiting effects of higher dose in the previous reports, relatively lower dose of aspirin that affected methyl L-DOPA-induced quinoprotein formation and cell death failed to prevent cyclooxygenase-induced dopamine chrome generation in cell-free system. Furthermore, aspirin but not acetaminophen or meloxicam showed direct dopamine quinone-scavenging effects in dopamine-semiquinone generating systems. The present results suggest that cyclooxygenase shows little contribution to dopamine oxidation in dopaminergic cells and that protective effects of aspirin against methyl L-DOPA-induced dopamine quinone neurotoxicity are based on its cyclooxygenase-independent property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.