We have searched for axion-like resonance states by colliding optical photons in a focused laser field (creation beam) by adding another laser field (inducing beam) for stimulation of the resonance decays, where frequency-converted signal photons can be created as a result of stimulated photon-photon scattering via exchanges of axion-like resonances. A quasi-parallel collision system (QPS) in such a focused field allows access to the sub-eV mass range of resonance particles. In past searches in QPS, for simplicity, we interpreted the scattering rate based on an analytically calculable symmetric collision geometry in both incident angles and incident energies by partially implementing the asymmetric nature to meet the actual experimental conditions. In this paper, we present new search results based on a complete parameterization including fully asymmetric collisional geometries. In particular, we combined a linearly polarized creation laser and a circularly polarized inducing laser to match the new parameterization. A 0.10 mJ/31 fs Ti:sapphire laser pulse and a 0.20 mJ/9 ns Nd:YAG laser pulse were spatiotemporally synchronized by sharing a common optical axis and focused into the vacuum system. Under a condition in which atomic background processes were completely negligible, no significant scattering signal was observed at the vacuum pressure of 2.6 × 10−5 Pa, thereby providing upper bounds on the coupling-mass relation by assuming exchanges of scalar and pseudoscalar fields at a 95% confidence level in the sub-eV mass range.
We propose a stimulated pulsed-radar collider to directly produce pseudo Nambu-Goldstone bosons as candidates for dark components in the Universe and simultaneously induce the decay by mixing two radar beams. We have extended formulae for stimulated resonant photon-photon scattering in a quasi-parallel collision system by including fully asymmetric collision cases. With a pulse energy of 100 J in the GHz-band, for instance, which is already achieved by an existing klystron, we expect that the model-independent sensitivity can reach gravitationally weak coupling domains at a mass range 10−7–10−6 eV, if two key technological issues are resolved: pulse compression in time reaching the Fourier transform limit, and single-photon counting for GHz-band photons. Such testing might extend the present horizon of particle physics.
Toward the systematic search for axion-like particles in the eV mass range, we proposed the concept of a stimulated resonant photon collider by focusing three short pulse lasers into a vacuum. In order to realize such a collider, we have performed a proof-of-principle experiment with a set of large incident angles between three beams to overcome the expected difficulty to ensure the space–time overlap between short pulse lasers and also established a method to evaluate the bias on the polarization states, which is useful for a future variable–incident–angle collision system. In this paper, we present a result from the pilot search with the developed system and the method. The search result was consistent with null. We thus have set the upper limit on the minimum ALP-photon coupling down to 1.5×10−4 GeV−1 at the ALP mass of 1.53 eV with a confidence level of 95%.
We have searched for axion-like resonance states by colliding optical photons in a focused laser field (creation beam) by adding another laser field (inducing beam) for stimulation of the resonance decays, where frequency-converted signal photons can be created as a result of stimulated photonphoton scattering via exchanges of axion-like resonances. A quasi-parallel collision system (QPS) in such a focused field allows access to the sub-eV mass range of resonance particles. In past searches in QPS, for simplicity, we interpreted the scattering rate based on an analytically calculable symmetric collision geometry in both incident angles and incident energies by partially implementing the asymmetric nature to meet the actual experimental conditions. In this paper, we present new search results based on a complete parameterization including fully asymmetric collisional geometries. In particular, we combined a linearly polarized creation laser and a circularly polarized inducing laser to match the new parameterization. A 0.10-mJ/36-fs Ti:sapphire laser pulse and a 0.20-mJ/9ns Nd:YAG laser pulse were spatiotemporally synchronized by sharing a common optical axis and focused into the vacuum system. Under a condition in which atomic background processes were completely negligible, no significant scattering signal was observed at the vacuum pressure of 2.6 × 10 −5 Pa, thereby providing upper bounds on the coupling-mass relation by assuming exchanges of scalar and pseudoscalar fields at a 95% confidence level in the sub-eV mass range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.