Elevated plasma levels of the sulfur-containing amino acid homocysteine increase the risk for atherosclerosis, stroke, and possibly Alzheimer's disease, but the underlying mechanisms are unknown. We now report that homocysteine induces apoptosis in rat hippocampal neurons. DNA strand breaks and associated activation of poly-ADP-ribose polymerase (PARP) and NAD depletion occur rapidly after exposure to homocysteine and precede mitochondrial dysfunction, oxidative stress, and caspase activation. The PARP inhibitor 3-aminobenzamide (3AB) protects neurons against homocysteine-induced NAD depletion, loss of mitochondrial transmembrane potential, and cell death, demonstrating a requirement for PARP activation and/or NAD depletion in homocysteine-induced apoptosis. Caspase inhibition accelerates the loss of mitochondrial potential and shifts the mode of cell death to necrosis; inhibition of PARP with 3AB attenuates this effect of caspase inhibition. Homocysteine markedly increases the vulnerability of hippocampal neurons to excitotoxic and oxidative injury in cell culture and in vivo, suggesting a mechanism by which homocysteine may contribute to the pathogenesis of neurodegenerative disorders.
Recent epidemiological and clinical data suggest that persons with low folic acid levels and elevated homocysteine levels are at increased risk of Alzheimer's disease (AD), but the underlying mechanism is unknown. We tested the hypothesis that impaired one-carbon metabolism resulting from folic acid deficiency and high homocysteine levels promotes accumulation of DNA damage and sensitizes neurons to amyloid beta-peptide (Abeta) toxicity. Incubation of hippocampal cultures in folic acid-deficient medium or in the presence of methotrexate (an inhibitor of folic acid metabolism) or homocysteine induced cell death and rendered neurons vulnerable to death induced by Abeta. Methyl donor deficiency caused uracil misincorporation and DNA damage and greatly potentiated Abeta toxicity as the result of reduced repair of Abeta-induced oxidative modification of DNA bases. When maintained on a folic acid-deficient diet, amyloid precursor protein (APP) mutant transgenic mice, but not wild-type mice, exhibited increased cellular DNA damage and hippocampal neurodegeneration. Levels of Abeta were unchanged in the brains of folate-deficient APP mutant mice. Our data suggest that folic acid deficiency and homocysteine impair DNA repair in neurons, which sensitizes them to oxidative damage induced by Abeta.
Food restriction can extend life span in rodents and was recently reported to increase the resistance of neurons in the brain to excitotoxic and metabolic insults. In principle, administration to ad libitum fed rodents of an agent that reduces glucose availability to cells should mimick certain aspects of food restriction. We now report that administration of 2-deoxy-D-glucose (2DG), a non-metabolizable analog of glucose, to adult rats results in a highly significant reduction in seizure-induced spatial memory deficits and hippocampal neuron loss. Pretreatment of rat hippocampal cell cultures with 2DG decreases the vulnerability of neurons to excitotoxic (glutamate) and oxidative (Fe2+) insults. The protective action of 2DG is associated with decreased levels of cellular oxidative stress and enhanced calcium homeostasis. 2DG treatment increased levels of the stress-responsive proteins GRP78 and HSP70 in hippocampal neurons, without affecting levels of Bcl-2 or GRP75, suggesting that mild reductions in glucose availability can increase neuronal resistance to oxidative and metabolic insults by a mechanism involving induction of stress proteins. Our findings establish cell culture and in vivo models of "chemical food restriction" which may prove useful in elucidating mechanisms of neuroprotection and in developing preventive approaches for neurodegenerative disorders that involve oxidative stress and excitotoxicity.
A chronic imbalance in DNA precursors, caused by one-carbon metabolism impairment, can result in a deficiency of DNA repair and increased DNA damage. Although indirect evidence suggests that DNA damage plays a role in neuronal apoptosis and in the pathogenesis of neurodegenerative disorders, the underlying mechanisms are poorly understood. In particular, very little is known about the role of base excision repair of misincorporated uracil in neuronal survival. To test the hypothesis that repair of DNA damage associated with uracil misincorporation is critical for neuronal survival, we employed an antisense (AS) oligonucleotide directed against uracil-DNA glycosylase encoded by the UNG gene to deplete UNG in cultured rat hippocampal neurons. AS, but not a scrambled control oligonucleotide, induced apoptosis, which was associated with DNA damage analyzed by comet assay and up-regulation of p53. UNG mRNA and protein levels were decreased within 30 min and were undetectable within 6 -9 h of exposure to the UNG AS oligonucleotide. Whereas UNG expression is significantly higher in proliferating as compared with nonproliferating cells, such as neurons, the levels of UNG mRNA were increased in brains of cystathionine -synthase knockout mice, a model for hyperhomocysteinemia, suggesting that one-carbon metabolism impairment and uracil misincorporation can induce the up-regulation of UNG expression.
Food restriction can extend life span in rodents and was recently reported to increase the resistance of neurons in the brain to excitotoxic and metabolic insults. In principle, administration to ad libitum fed rodents of an agent that reduces glucose availability to cells should mimick certain aspects of food restriction. We now report that administration of 2-deoxy-D-glucose (2DG), a non-metabolizable analog of glucose, to adult rats results in a highly significant reduction in seizure-induced spatial memory deficits and hippocampal neuron loss. Pretreatment of rat hippocampal cell cultures with 2DG decreases the vulnerability of neurons to excitotoxic (glutamate) and oxidative (Fe2+) insults. The protective action of 2DG is associated with decreased levels of cellular oxidative stress and enhanced calcium homeostasis. 2DG treatment increased levels of the stress-responsive proteins GRP78 and HSP70 in hippocampal neurons, without affecting levels of Bcl-2 or GRP75, suggesting that mild reductions in glucose availability can increase neuronal resistance to oxidative and metabolic insults by a mechanism involving induction of stress proteins. Our findings establish cell culture and in vivo models of "chemical food restriction" which may prove useful in elucidating mechanisms of neuroprotection and in developing preventive approaches for neurodegenerative disorders that involve oxidative stress and excitotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.