A proteomic approach was used to identify 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) protein targets in human neuroblastoma SH-SY5Y cells. By using biotinylated 15d-PGJ2, beta-actin was found as the major adducted protein; at least 12 proteins were also identified as minor biotin-positive spots, falling in different functional classes, including glycolytic enzymes (enolase and lactate dehydrogenase), redox enzymes (biliverdin reductase), and a eukaryotic regulatory protein (14-3-3gamma). 15d-PGJ2 induced marked morphological changes in the actin filament network and in particular promoted F-actin depolymerization as confirmed by Western blot analysis. By using a mass spectrometric approach, we found that 15d-PGJ2 reacts with isolated G-actin in a 1:1 stoichiometric ratio and selectively binds the Cys374 site through a Michael adduction mechanism. Computational studies showed that the covalent binding of 15d-PGJ2 induces a significant unfolding of actin structure and in particular that 15d-PGJ2 distorts the actin subdomains 2 and 4, which define the nucleotide binding sites impeding the nucleotide exchange. The functional effect of 15d-PGJ2 on G-actin was studied by polymerization measurement: in the presence of 15d-PGJ2, a lower amount of F-actin forms, as followed by the increase in pyrenyl-actin fluorescence intensity, as the major effect of increasing 15d-PGJ2 concentrations occurs on the maximum extent of actin polymerization, whereas it is negligible on the initial rate of reaction. In summary, the results here reported give an insight into the role of 15d-PGJ2 as a cytotoxic compound in neuronal cell dysfunction. Actin is the main protein cellular target of 15d-PGJ2, which specifically binds through a Michael adduction to Cys374, leading to a protein conformational change that can explain the disruption of the actin cytoskeleton, F-actin depolymerization, and impairment of G-actin polymerization.
Syndecans, a family of transmembrane heparan sulphate proteoglycans, contribute to various biological processes, including adhesion, motility, proliferation, differentiation and morphogenesis. We document here the involvement of syndecan-2 acting alone or co-operatively with integrin alpha5beta1, for regulation of actin-cytoskeletal organization on cell adhesion to fibronectin, using fibronectin-recombinant polypeptides containing the ligands for either or both of these receptors as substrata. Lewis lung carcinoma-derived low-metastatic P29 cells binding to the substrata by both receptors formed actin stress fibres, whereas those binding by syndecan-2 or integrin alpha5beta1 alone formed filopodia or cortex actin. In contrast, higher metastatic LM66-H11 cells formed cortex actin even on substrata containing both ligands. Northern-blot and flow-cytometric analyses revealed that syndecan-2 expression in LM66-H11 cells was significantly lower (1/4.5 in mRNA and 1/8 in cell-surface expression) than in P29 cells, whereas expression levels of integrin alpha5beta1 and other syndecans were similar in both cell types. These results suggest that the failure of LM66-H11 to form stress fibres is due to a lower expression of syndecan-2 than that due to a threshold for its function. This was confirmed by the finding that overexpression of syndecan-2 by transfection of its cDNA into LM66-H11 cells caused the formation of stress fibres on the fibronectin substratum. These in vitro cellular responses of the two clones might reflect their in vivo situation in primary tumours in which P29 cells with a stroma-inducing capacity were immediately surrounded by fibronectin-rich matrix formed by the induced stromal cells, whereas LM66-H11 cells without such capacity were not surrounded by a similar matrix.
The syndecans comprise a family of cell surface heparan sulfate proteoglycans exhibiting complex biological functions involving the interaction of heparan sulfate side chains with a variety of soluble and insoluble heparin-binding extracellular ligands. Here we demonstrate an inverse correlation between the expression level of syndecan-2 and the metastatic potential of three clones derived from Lewis lung carcinoma 3LL. This correlation was proved to be a causal relationship, because transfection of syndecan-2 into the higher metastatic clone resulted in the suppression of both spontaneous and experimental metastases to the lung. Although the expression levels of matrix metalloproteinase-2 (MMP-2) and its cell surface activators, such as membrane-type 1 matrix metalloproteinase and tissue inhibitor of metalloproteinase-2, were similar regardless of the metastatic potentials of the clones, elevated activation of MMP-2 was observed in the higher metastatic clone. Removal of heparan sulfate from the cell surface of low metastatic cells by treatment with heparitinase-I promoted MMP-2 activation, and transfection of syndecan-2 into highly metastatic cells suppressed MMP-2 activation. Furthermore, transfection of mutated syndecan-2 lacking glycosaminoglycan attachment sites into highly metastatic cells did not have any suppressive effect on MMP-2 activation, suggesting that this suppression was mediated by the heparan sulfate side chains of syndecan-2. Actually, MMP-2 was found to exhibit a strong binding ability to heparin, the dissociation constant value being 62 nM. These results indicate a novel function of syndecan-2, which acts as a suppressor for MMP-2 activation, causing suppression of metastasis in at least the metastatic system used in the present study.Tumor metastasis is accomplished through a multistep process in which individual tumor cells disseminate from a primary tumor to distant secondary sites. In the process of metastasis, tumor cells are involved in numerous interactions with the extracellular matrix (ECM) 2 providing information that controls the behavior of tumor cells. The information inscribed in the ECM is transmitted to tumor cells through interaction between individual ECM ligands and the respective cell surface receptors.One class of cell surface receptors with such functions is cell surface heparan sulfate proteoglycans, including the transmembrane-type syndecan family and the glycosylphosphatidylinositol-anchored-type glypican family (1-3). However, cell surface heparan sulfate proteoglycans are unique and are different from proteinous cell surface receptors in terms of the binding redundancy for ligands. This is because the many ligand-binding sites reside in the polysaccharide moiety (i.e. heparan sulfate side chains). Therefore, theoretically, they can be receptors for all heparin-binding molecules. Actually, a large number of reports have demonstrated that cell surface heparan sulfate proteoglycans function as receptors for soluble heparinbinding ligands, such as cell growth factors...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.